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PREFACE 

It is with great pleasure that the Climate Prediction Center (CPC) and the Office of Science and 

Technology Integration (STI) offer you this synthesis of the 45th Climate Diagnostics and Prediction 

Workshop (CDPW). This was the first time that the CDPW was held as a virtual workshop due to 

the Covid-19 pandemic.  The CDPW remains a must attend workshop for the climate monitoring and 

prediction community.  As is clearly evident in this digest, considerable progress is being made both 

in our ability to monitor and predict climate.  The purpose of this digest is to ensure that climate 

research advances are shared with the broader community and also transitioned into operations.  This 

is especially important as NOAA works to enhance climate services both across the agency and with 

external partners. We hope you find this digest to be useful and stimulating.  And please drop me a 

note if you have suggestions to improve the digest. 

I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology Integration, for 

developing the digest concept and seeing it through to completion.  This partnership between STI 

and CPC is an essential element of NOAA climate services. 

David G. DeWitt 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

Due to the COVID-19 pandemic NOAA's 45th Climate Diagnostics and Prediction Workshop was held 
online on 20–22 October 2020. The workshop with 401 participants registered was hosted by the Climate 
Prediction Center (CPC) of the National Centers for Environmental Prediction (NCEP) and the Climate 
Services Branch (CSB) of the National Weather Service (NWS) Headquarters. 

The workshop focused on four major themes, with an emphasis on climate prediction, monitoring, 
attribution, diagnostics, and service delivery related to: 

1. Monitoring, attribution, and prediction of climate variability across spatial and temporal scales, with 
an emphasis on the forecast attribution of climate anomalies in dynamical forecast systems. Topics 
also included diagnostics and attribution of extreme events worldwide, and Arctic impact on mid-
latitude variability and predictability; 

2. Applications of modern technologies including GIS, machine learning, and software development at 
Sub-seasonal to Seasonal (S2S) time scales; 

3. Improving methods for regional applications of climate forecast information for disruptive weather 
and water events, communication practices for S2S impact-based decision support services, and 
assessment of the economic value of climate forecast information;  

4. Prediction of hydroclimate over the western United States, including flooding precipitation, 
drought/pluvial, snowfall and snowpack, and other variables related to water resources. 

The workshop featured oral and poster presentations, invited talks, and virtual discussion rooms. This 
Digest is a collection of extended summaries of the presentations contributed by participants. 

The workshop is continuing to grow and expected to provide a stimulus for further improvements in 
climate monitoring, diagnostics, prediction, applications and services. 

 

 



 



1.  ENSO Applications
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The Importance of Central Pacific Meridional Heat Advection to 
the Development of ENSO 
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ABSTRACT 

The relationship between the Warm Water Volume (WWV1) ENSO precursor and ENSO SST weakened 
substantially after ~2000, coinciding with a degradation in dynamical model ENSO prediction skill. It is 
important to understand the drivers of the equatorial thermocline temperature variations and their linkage to 
ENSO onsets. In this study, a set of ocean reanalyses is employed to assess factors responsible for the variation 
of the equatorial Pacific Ocean thermocline during 1982-2019. Off-equatorial thermocline temperature 
anomalies carried equatorward by the mean meridional currents associated with Pacific Tropical Cells are 
shown to play an important role in modulating the central equatorial thermocline variations, which is rarely 
discussed in the literature. Further, ENSO events are delineated into two groups based on precursor mechanisms: 
the western equatorial type (WEP) ENSO, when the central equatorial thermocline is mainly influenced by the 
zonal propagation of anomalies from the western Pacific, and the off-equatorial central Pacific (OCP) ENSO, 
when off-equatorial central thermocline anomalies play the primary role. WWV is found to precede all WEP 
ENSO by 6-9 months, while the correlation is substantially lower for OCP ENSO events. In contrast, the central 
tropical Pacific (CTP2) precursor, which includes off-equatorial thermocline signals, has a very robust lead 
correlation with the OCP ENSO (Fig. 1). Most OCP ENSO events are found to follow the same ENSO 
conditions, and the number of OCP ENSO increases substantially since the 21st century. These results highlight 
the importance of monitoring off-equatorial subsurface preconditions for ENSO prediction and to understand 
multi-year ENSO.  

This work has been published in Journal of Climate in 2021.   

(Continued on next page)  
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(Continued from previous page) 

Fig. 1  Scatter plot of (a) WWV in June, (b) WWV in March, (c) CTP in June, and (d) NMME NINO3.4 forecasts 
initialized at early July vs. observed Nino3.4 indices in Nov-Dec-Jan (NDJ) during 1982-2019. In (a)-(c), 
purple dash lines denote the threshold values of the two precursors. “r” (WEP) denotes the correlation 
coefficient for the WEP events. “r” (OCP) denotes the correlation coefficient for the OCP events. Correlation 
values greater than 0.5 are significant well above 95% confidence level. Numerals denote the last two digits 
of the year. The red (blue), green (purple), black characters represent WEP El Niño (La Niña), OCP El Niño 
(La Niña), and ENSO neutral years, respectively. Note 1994 El Niño was not included in the plot because it 
is neither WEP El Niño nor OCP El Niño. 

References 

Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial 
930Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 3551–3559. 

Wen, C., A. Kumar, Y. Xue, and M. J. McPhaden, 2014: Changes in tropical Pacific thermocline depth and 
their relationship to ENSO after 1999. J. Climate, 27, 7230–7249, https://doi.org/10.1175/JCLI-D-13-
00518.1 

―, ―, M. L’Heureux, Y. Xue and E. Becker, 2021: The importance of central Pacific meridional heat advection 
to the development of ENSO. J. Climate, https://doi.org/10.1175/JCLI-D-20-0648.1 

1 WWV  is  calculated  as  an  average  of  the depth of the 20°C isotherm (D20)  anomaly  across  the  equatorial  Pacific  
(120°E-80°W, 5°S-5°N) (Meinen and McPhaden 2000). 

2 CTP is defined as the averaged D20 anomaly in the central tropical Pacific (160°W-110°W, 10°S-10°N) (Wen et al. 
2014). 
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The Niño Difference Index  
John W. Nielsen-Gammon and Scott Meyer 

Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 

1.  The problem 

 The intensity and sign of the El Niño/Southern Oscillation (ENSO) is conventionally measured by one of 
several indices designed for the task.  Indices provide a handy means for comparing different ENSO events, 
although a single index cannot differentiate among different "flavors" of ENSO.  Indices are also useful for 
inferring the magnitude of local and remote ENSO impacts, for diagnostic and forecasting purposes. Statistics 
related to ENSO indices may also be used to quantify and compare ENSO performance among coupled climate 
models.  

The National Oceanic and Atmospheric Administration (NOAA) uses three-month running-mean sea 
surface temperature anomalies over the Niño 3.4 region (5°N to 5°S, 120°W to 170°W) to monitor El Niño or 
La Niña conditions via the Oceanic Niño Index (ONI) (Lindsey 2013; Kousky and Higgins 2007). The Niño 
3.4 index uses 1981-2010 as climatology to calculate the SST anomalies for index values while the ONI uses 
thirty-year centered averages for each five-year period (Huang et al. 2016).  Other indices use different regions 
of the ocean (Trenberth 1997) or monitor different aspects of the coupled ocean-atmosphere system (Walker 
and Bliss 1932; Allan et al. 1991; Chiodi and Harrison 2010, 2013, 2015; Wolter and Timlin 1993, 2011; 
Williams and Patricola 2018).  

Ideally, an index used for monitoring the ENSO driver of global climate impacts would have the same form 
in models and observations, would be robust to climate change, and would effectively identify "super" El Niño 
events.  The ONI is suboptimal because its anomaly definition necessarily lags current climatic conditions and 
model studies rarely use reference periods that change every five years.  Perhaps the best existing index in this 
regard is the ENSO Longitude Index (ELI; Williams and Patricola 2018), but this index is unfamiliar to many 
and doesn't have the same interpretation as ONI.   

2.  A proposed solution 

We propose a Niño Difference Index (NDI), 
defined as the (raw or anomalous) difference 
between the sea surface temperatures in the 
central Tropical Pacific and sea surface 
temperatures elsewhere, with the premise that the 
temperature difference between, say, the western 
and central tropical Pacific drives the spatial shifts 
in convection that in turn drive remote ENSO 
responses.  In principle, the NDI can possess all 
the desirable characteristics listed above.  The 
research task is then to determine which two areas 
of sea surface temperature should define the NDI.  
We seek definitions which optimize the 
correlation with the leading EOF of regional or 
global precipitation, using Global Precipitation 
Climatology Product (GPCP) data (Adler et al. 
2018). 

Fig. 1  Fraction of the leading EOF of global precipitation 
variance explained by the difference between the average 
SST in the Niño 3.4 region and the average SST in a 
40°x114° box centered at the specified locations.  
Contours highlight box locations where the difference 
index explains more variance than the Niño 3.4 index. 
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If the Niño 3.4 box is assumed to be the 
central Tropical Pacific area, a search over all 
possible box sizes and locations reveals that the 
greatest annual mean fraction of explained 
seasonal precipitation variance is obtained when 
the Niño 3.4 SST is subtracted from the average 
SST in a box 40° tall by 114° wide centered over 
the central Pacific.  Figure 1 shows the explained 
variance for 40°x114° boxes centered over the 
Indian or Pacific Oceans.  Contours (every 0.1) 
begin at the explained variance of Niño 3.4.  
Improvement in explained variance is found for 
boxes centered over the central or western tropical 
Pacific; the optimal location yields an NDI that 
explains 30% of the variance left unexplained by 
Niño 3.4.  

Without the Niño 3.4 constraint, the optimal 
reference SST region shrinks to 6°x50°, narrower 
but comparable in size to the Niño 3.4 box.  The 
ideal such box is centered on the equator in the 
Maritime Continent region (Fig. 2). 

The optimal central Pacific box under that 
circumstance is centered within the Niño 3.4 
region but is narrower and broader, sampling 
most of the equatorial Pacific Ocean (Fig. 3). 

Sensitivity tests show that the largest 
explained variance gains are in March-May, with 
conversely little impact in December-February.  
While it is possible to specify optimal box 
locations for each season, consistency and 
simplicity dictate a constant box definition 
throughout the year.  Using such a definition, the 
annual fractional explained variance of the 
leading precipitation EOF increases from 0.82 for 
Niño 3.4 to 0.88 for the NDI. 

3.  Summary 

Using fixed box locations throughout the 
year, the optimal NDI definition is the mean SST 
in the area 3°S-3°N, 180°W-95°W minus the 
mean SST in the area 1°S-5°N, 120°E-170°E.  Such an index can be used in either raw or anomaly form and 
explains substantially more of the global precipitation response than a conventional Niño 3.4 index. 

Acknowledgements.  This research was sponsored by NOAA OAR, award #NA17OAR4310157. 
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specified locations. 
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ABSTRACT 

In light of a warming climate, the complexity of the El Niño/Southern Oscillation (ENSO) makes its 
prediction a challenge. In addition to various flavors of ENSO, oceanic warming in the central and eastern 
tropical Pacific is not always accompanied by corresponding atmospheric anomalies, i.e., the atmosphere and 
ocean remain uncoupled. Such uncoupled warm events as happened in 1979, 2004, 2014, and 2018 are rare 
(Fig. 1) and represent an unusual form of ENSO diversity.  

Fig. 1  Evolutions of 3-month running mean sea surface temperature (SST; shading) and outgoing longwave 
radiation (OLR; Contours) anomalies averaged between 2°S and 2°N during (a) July 1979-November 1980, 
(b) July 2004-November 2005, (c) July 2014-November 2015, (d) July 2018-Novermber 2019, (e) July 1982-
November 1983, and (f) July 1997-November 1998. The unit is °C for SST, and W/m2 for OLR.  Panels (a-
d) correspond to uncoupled warming events, whereas (e, f) correspond to strong El Niño. 
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A weaker zonal sea surface temperature anomaly gradient across the tropical Pacific compared to a 
conventional El Niño may partially account for the decoupling (Fig. 2). Also, the uncoupled warm events 
typically start late in the calendar year, which raises the possible influence of seasonality in background 
conditions for the lack of coupling. Without coupling, the impact of the warming in the central and eastern 
tropical Pacific on extratropical climate is different from that of its coupled counterpart.   

Fig. 2  Composites of monthly mean anomalies of SST and wind at 1000 hPa for (a) Niño3.4 ≥ 0.5oC and CP_OLR 
< 0.0, (b) Niño3.4 ≥ 0.5oC and CP_OLR > 0.0 during January 1979-December 2019. Monthly data were used in 
the composites, which include 111 months in (a) and 28 months in (b), respectively. The hatches indicate that 
the composite anomalies are significantly different at 5% level from those of the non-selected month based on a 
t-test. Lead and lag correlations between (c) the CP_OLR and Niño3.4 indices; (d) the CP_OLR and SSTA zonal 
gradient indices; and (e) the zonal wind and SSTA zonal gradient indices. The SSTA zonal gradient index is 
defined as the SSTA mean difference of the central (5°S-5°N, 160°E-160°W) minus the eastern (5°S-5°N, 
120°W-90°W) tropical Pacific (the green rectangles in Fig. 2b). The zonal wind index is defined as the surface 
zonal wind stress anomaly averaged in (5°S-5°N, 160°-120°W; the blue rectangles with dashed line in Fig. 2b). 
The horizontal dot-dash lines in (c-e) represent the 5% significance level using the t-test with estimated 
independent sample size following Bretherton et al. (1999). 

This study has been published in Geophysical Research Letters in 2020.  
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ABSTRACT 

Prospects for El Niño–Southern Oscillation (ENSO) predictability at long lead-times lie in the subsurface 
oceanic memory along the equatorial Pacific. Long considered a reliable precursor to ENSO, the oceanic heat 
content in springtime, often referred to as the recharge-discharge, is considered the most promising indicator of 
an ENSO event to come. In this study, we utilize January initialized hindcasts from the North American Multi-
model Ensemble (NMME) over 1982–2010 to confront the hypothesis that the springtime recharge is a skillful 
predictor of ENSO the following winter. We find that the NMME ensemble mean predictions for the springtime 
recharge are highly skilled, even at a 10-months 
lead. Overall, as an independent predictor of 
ENSO, the springtime recharge-discharge tips the 
scale towards like-sign ENSO, but the spread of 
ENSO outcomes remains large. In both 
observations and the NMME predictions, 
recharged (discharged) states rarely evolve into La 
Niña (El Niño) events, yet an ENSO-neutral state 
is as likely to occur after a preconditioned state as 
is a like-sign ENSO event, particularly in 
observations. However, more often than in 
observations, the initialized predictions follow 
springtime recharged, neutral, and discharged 
states with El Niño, ENSO-neutral, and La Niña 
events, respectively, indicating that the NMME 
underestimates the uncertainty in nature. 
Predictions from initially recharged and 
discharged states also produce comparable signal-
to-noise ratios in December ENSO predictions 
over the hindcast period. Therefore, in the realistic 
forecast setting considered, neither a recharged nor 
a discharged state produces a more predictable 
ENSO outcome, which is at odds with conclusions 
from recent predictability studies.   

This study has been published in Climate 
Dynamics in 2020.  
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Fig. 1  Recharge-Discharge as a predictor for ENSO. 
Probability of ± Nino3.4 sign given sea surface height 
averaged over the western Pacific domain (SSHw) sign 
in a observations and c January initialized NMME 
forecasts. Probability of El Niño, La Niña, and Neutral 
conditions in December given a Discharged, Neutral, or 
Recharged state in March in b observations and d the 
January initialized NMME forecasts. For observations, 
error bars are computed via the Monte Carlo method: 
randomly sampling 20 years 10,000 times and choosing 
the 5% bounds on either side. For the NMME, the 5% 
bounds are computed by randomly sampling all 
ensemble member forecasts from 20 randomly selected 
forecast years 10,000 times.  
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1. Introduction 

 Subseasonal phenomena (e.g., Weickmann and Berry 2009) and forecasting have been topics of great 
interest during the last several years. Previous research (e.g., Renken et al. 2017) demonstrated there is 
detectable variability on the one-to-four-week time-scale in the 500 hPa height field when decomposing the 
climatological time series of the Pacific North American (PNA) Index. They identified 7-11, 17, 21 and 24-day 
cycles in the index using Fourier decomposition of the index from 1950-2017, and this appears to support early 
work (e.g., Branstator 1987) that found similar periodicity (16-23 days) in the upper troposphere and 
stratosphere during the winter of 1979-1980 using empirical orthogonal function (EOF) analysis. The Renken 
et al. (2017) study demonstrated also the utility of the Bering Sea Rule (BSR) and East Asia Rule (EAR) Indexes 
in skillfully projecting unusual (2σ or greater) warm or cool periods for the central United States (US) along 
with analogues. This predictability is due likely to long period Rossby Wave propagation (e.g., Wang et al. 
2013; Seo et al. 2016). These and others have identified periodic fluctuations in the PNA region due to these 
Rossby Waves out to almost 40 days. 

Renken et al. (2017) also demonstrated the linkage of blocking anticyclones to excessively cold periods 
over the middle of the US. They also suggested that severe weather outbreaks may be anticipated using these 
techniques. Dynamic predictability beyond the well-known forecast wall (e.g., 10-14 days) is not possible using 
dynamic techniques based on the primitive equations although skillful prediction of changes in the large-scale 
flow regime out to 10 days or beyond using ensemble models (e.g., Klaus et al. 2020) has been demonstrated. 
Then, Miller et al. (2020) use a hybrid statistical – dynamic technique to successfully project tornado outbreak 
frequency out to week three with skill better than climatology during March - May, the peak season for tornado 
occurrence. They found one particular flow regime was associated with at least one tornado occurrence 70% of 
the time or more.   

Intraseasonal variability and the link to severe or extreme weather outbreaks in the United States has been 
shown previously (Thompson and Roundy 2013; Moore and McGuire 2020). They demonstrated that extreme 
(or violent) spring season severe weather outbreaks (1974-2010) are more likely during phase 2 of the Real-
time Multivariate (RMM) index phase of the Madden Julian Oscillation (MJO). Moore and McGuire (2020) 
demonstrated a tropical to mid-latitude connection to extreme weather over North America via the propagation 
of Rossby Wave Trains (RWT). Also, Moore et al. (2018) and Moore (2019) demonstrated a link between the 
phase of ENSO and the occurrence of tornadoes in the United States. They found that the La Nina phase favored 
higher tornado numbers in the USA. Additionally, Cook et al. (2017) found that the region known as Dixie 
Alley was more active (from 1950-2016) during La Nina years while the traditional Tornado Alley was more 
active during El Niño years. Lastly, Lepore et al. (2017) demonstrated that winter season ENSO phase can be 
used to anticipate spring season severe weather (tornado and hail) activity. Their work implied that La Niña 
years showed more success especially for hail events.  
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The goal of this work is two-fold: 1) to demonstrate that there is subseasonal variability in the daily Southern 
Oscillation Index and the time derivative from 1991-2020, and 2) this information as well as the results of 
Renken et al. (2017) can be used to detect outbreaks of different modes of severe weather. The utilization of 
the time rate of change of teleconnection indexes has precedent. Henson et al. (2017) related the seasonal 
transition in ENSO phase and relate the transition of ENSO to agricultural yields. Section two describes the 
data and methods used here. Section three analyzes the daily SOI time series, and section four examines the 
major severe weather events identified for this study and the ability of the daily SOI index and the daily change 
in SOI to detect severe weather events as done in Renken et al. (2017).  

2.  Data and methods 

a.  Data  

The data used for this research can be found at several sources. The daily SOI index information was 
available through the Bureau of Meteorology (BOM) (Australia) website (https://data.longpaddock.qld.gov.au/ 
SeasonalClimateOutlook/SouthernOscillationIndex/SOIDataFiles/DailySOI1887-1989Base.txt) from 6 June 
1991 – 31 December 2020 (a 30-year period). The SOI data from 1 January 1991 – 5 June 1991 were obtained 
by using daily pressure data at Tahiti and Darwin and then calculating SOI following the BOM formulation. 
The severe weather storm reports (1 January 1991 – 31 December 2020) can be found at two sites 
(https://www.spc.noaa.gov and https://www.ncdc.noaa.gov/stormevents/). The filtered counts of severe 
occurrence were used from the Severe Storms Prediction Center (SPC) archive. 

b.  Methods  

The 24-h and 72-h change in SOI was calculated from 1 January 1991 to 31 December 2020. The change 
in SOI was calculated as a finite difference with time for the 24-h and 72-h change. Then a Fourier Transform 
was applied to each dataset and plotted in wave space. In order to test for significant periods (e.g., Renken et 
al. (2017), a significance test assuming a white noise spectrum a priori was applied following Wilks (2006) and 
testing at the 95% confidence level (p = 0.05).  

In order to examine severe weather and produce large enough sample sizes for each mode (tornado, hail 
greater than or equal to 25.4 mm, and winds greater than or equal to 25.9 m s-1), a major severe weather event 
(day) was defined as a day with the number of reports over the entire United States as follows: a) 20 or more 
tornadoes, b) 155 or more strong wind, c) 135 or more hail. This produced 358 tornado days, 365 strong wind 
days, and 309 hail days. The distributions for the severe weather occurrences were tested using the chi-square 
goodness-of-fit test (e.g., Wilks 2006). 

The SOI information and severe weather were then stratified by ENSO phase. The definition for ENSO 
used here is described in Henson et al. (2017) and references therein. The Japanese Meteorological Agency 
(JMA) ENSO index is available through the Center for Ocean and Atmospheric Prediction Studies (COAPS) 
from 1868 to present (https://www.coaps.fsu.edu). Finally, the ability of the SOI change index to detect the 
occurrence of severe weather is examined.  

3.  Daily SOI Index variability 

The daily SOI index values and the daily change in SOI were analyzed here in order to determine if short-
term variability in this index can be identified. Typically, this index is analyzed monthly in order to determine 
the current phase of ENSO, and for example, Henson et al. (2017) used the change in phase of ENSO over the 
summer season to differentiate the dominant weather and climate regimes and these depended on the direction 
of the ENSO phase transition. Thus, there is precedent for examining teleconnection indexes and their time rate 
of change. Figure 1 shows the daily SOI from 1991-2020 time series and the Fourier transform of this time 
series which is in wave space. In Fig. 1a, the mean SOI was -1.3 and the standard deviation was 15.6. For the 
daily SOI change (not shown) the mean was 0.0 units and the standard deviation was 8.0 units. In Section 4, a 
daily SOI change of 10 units and three-day change of 20 units will be used to detect severe weather events since 
these values are larger than the daily standard deviation of SOI change.   

 In Fig. 1b and c, wave numbers 500 to 1500 are shown for the SOI time series, which correspond to waves with 
a period of seven to 20 days. The blue dashed line shows the p = 0.05 confidence level using a white noise spectrum 
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(Wilks, 2006). The SOI index showed the greatest power at much longer periods (low wave number). The daily 
change in SOI index would show more power at shorter periods (high wave number – not shown). Significant periods 
are shown near wave number 670, 760, and 780 which correspond to 16, 15, and 14 days (Fig. 1b), respectively. 
Other peaks in the SOI are evident near wave number 140, 210, 360, 560, 920, 940, and 1020 (Fig. 1b, c) which 
correspond to 78, 52, 30, 24, and 12, 11, and 10 days, respectively. The first three peaks correspond to the wave 
number 140, 210, and 360, which are not shown in Fig. 1b. but these are consistent with the MJO (e.g., Thompson 
and Roundy 2013). The fourth peak corresponds to the wave number 560 and is consistent with results shown in 
Renken et al. (2017) or Branstator (1987) for mid-latitude flows. The last three periods (10-12 days) are similar to 
the persistence of mid-latitude large-scale weather regimes (e.g., Jensen et al. 2018). The same 14-16-day periods in 
the daily SOI change would be evident and would correspond to the same periods in the SOI index. There are peaks 
also in the daily change in the SOI index from wave numbers 900-1470 corresponding with periodicities of 12 to 
eight-days. These results mirror the results of Renken et al. (2017) who showed these periodicities in the daily PNA 
Index.  

A 

B 

C 

Fig. 1  The a) observed SOI and b) and c) SOI index in wave space for wave numbers b) 500 -1000 and c) 1000-
1500. 

4.  Relationship to severe weather 

An examination of the mean daily change in the SOI (3-day SOI change) was calculated to be close to zero 
(-1.5 units day-1) and the standard deviation was 8 (15.7) units. Thus, a change of 10 SOI units day-1 is larger 
than one standard deviation, while a 20-point change over three days is greater than two standard deviations. 
During the 30-year period there were more than 2500 of these events, often occurring in succession or in 
episodes.  

If a large change in the SOI is lagged from one to 30 days and the raw number of severe weather reports 
greater than one for each mode of severe weather are plotted (Fig. 2) for April through June, it is apparent that 
there is little difference in the number severe weather reports corresponding to these lags. However, when 
testing for significance using a t-test (Fig. 2), there is a preference for the occurrence of severe weather lagged 
at approximately16 days, which corresponds to significant SOI and SOI change variability identified in Fig. 1. 
This statistical test demonstrates a preferred lag beyond the time period (10-12 days) typically associated with 
the primitive equations. What is not clear is whether the result in Fig. 2 is associated with a physical 
phenomenon or if this represents constructive interference between short period fluctuations and the longer 
period Rossby wave action identified by Renken et al. (2017) and several others. 
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As shown in section three, there were periodicities in the SOI and the daily change of SOI between 
approximately eight and 12 days, as well as at 16 and 24 days. Thus, to test whether these large changes in SOI 
correlate to major severe weather days, the probability of detection (POD) was determined by examining the 
daily changes in the SOI index with a lag of nine to 11 and 19 to 21-day period previous to the major severe 
weather day (Tables 1-4). These intervals were chosen since they are at the mid-points of the periodicities 
described above and provides for a more rigorous test of the POD. The number of missed forecasts were also 
counted. A miss is determined to be an event that was not preceded by a large SOI change in either the 10-point 
change in one day or the 20-point change in three-day intervals.  

Table 1 examined the days with 20 or more tornadoes demonstrated that 159 and 144 of these events were 
preceded by a 10-point change in the SOI index nine to 11 and 19 to 21 days before the event, respectively. For 
20-point changes over three days, these numbers were 163 and 134 days, respectively. Separately, this 
represents about 80% of all severe weather events being preceded by large changes in SOI at 9 to 11 days or 
19 to 21 days prior.  For the total number of events identified in Table 1, those that were preceded by changes 
in both time periods (and condition) were counted only once. Thus, 73% of events were preceded by strong 
changes in the SOI index in either range (9-11 and 19-21 day) for a one-day SOI change of 10 points, and 66% 
for a three-day change of 20 points in SOI. This means only 27% and 34% of these events, respectively, were 
counted as a miss. This is fewer misses than either the 9-11 day or 19-21-day categories separately. Examining 
these events by phase of ENSO (Table 1), demonstrates that there was no significant variability in the 
percentage of major tornado days preceded by 10-point daily SOI change or a 20-point three-day SOI change 
at 9-11 days before the event. However, 19-21 days beforehand, 10-point daily SOI changes or 20-point three-
day SOI changes were more likely to be associated with severe weather in EN and NEU years. Thus, if both 
categories were considered, EN and NEU years had the larger POD. 

The results for major high wind (Table 2) and hail (Table 3) days were similar for daily 10-point changes 
in SOI to the major tornado day results. Both Table 2 and 3 showed a 73% POD overall, and for high winds the  

Fig. 2  Top: the average number of severe weather reports during April, May, and June for all hail, 
thunderstorm wind, tornado, or any severe weather events as a function of days (across the top) following 
a 10-point SOI decrease (D), increase (R), or no 10-point change (n).  Bottom: the p-value associated with 
the cells in the table above. The values in red are p <= 0.05. 
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POD was larger for EN years versus NEU and LN years. The POD for major hail days was lowest for LN years. 
Thus, the composite results (Table 4) demonstrate that the POD overall and in NEU years was roughly 73% 
and about 27% of major severe days were missed. The highest composite POD was noted for EN years, while 
LN years were lowest. For 20-point three-day changes in SOI (Table 2 and 3), the POD was similar for all 
years. 

As noted above, the test performed here was more rigorous to demonstrate the value of a large daily change 
in SOI indicating the possibility of severe weather 9 to 11 or 19 to 21 days later. The periodicities identified in 
the SOI and daily change in SOI time series (Fig. 2) is likely to vary by season and ENSO phase as discussed 
in Renken et al. (2017). If the test interval here used was the wider intervals discussed in section three, or varied 

Table 1  The number of days with 20 or more tornado reports associated with a) 10-point daily and b) 20-point 
over three-day changes in the SOI by ENSO Phase at 9 to 11 days and 19 to 21 days before outbreak. The 
total number of outbreaks identified excludes the event days identified by both periods. The percentages 
are probability of detection (POD). 

 LN EN NEU Total 
a)     

9 – 11 day 28 / 43% 43 / 42% 88 / 46% 159 / 44% 
19 – 21 day 19 / 29% 45 / 44% 80 / 42% 144 / 40% 

No SOI change 22 29 47 98 
Total w/o overlap 43 / 66% 74 / 72% 143 / 75% 260 / 73% 

b)     
9 to 11 day 31 / 48% 45 / 44% 87 / 46% 163 / 46% 
19 – 21 day 20 / 31% 38 / 37% 76 / 40% 134 / 37% 

No SOI change 22 39 62 123 
Total w/o overlap 43 / 66% 64 / 62% 128 / 67% 235 / 66% 
Total Outbreaks 65 103 190 358 

Table 2  As in Table 1, but for 155 or more high wind reports. 
 LN EN NEU Total 

a)     
9 – 11 day 44 / 58% 55 / 50% 92 / 51% 191 / 52% 

19 – 21 day 28 / 37% 57 / 52% 82 / 46% 167 / 46% 
No SOI change 23 27 50 100 

Total w/o overlap 53 / 70% 83 / 75% 129 / 72% 265 / 73% 
b)     

9 – 11 day 40 / 53% 57 / 52% 85 / 47% 182 / 50% 
19 – 21 day 28 / 37% 49 / 45% 82 / 46% 159 / 44% 

No SOI change 23 33 51 107 
Total w/o overlap 53 / 70% 77 / 70% 128 / 71% 258 / 71%  
Total Outbreaks 76 110 179 365 

Table 3  As in Table 1, except for days with 135 or more hail (greater than 25.4 mm) report. 
 LN EN NEU Total 

a)     
9 – 11 day 27 / 41% 42 / 56% 77 / 46% 146 / 47% 

19 – 21 day 25 / 38% 35 / 44% 81 / 48% 141 / 46% 
No SOI change 25 17 40 82 

Total w/o overlap 41 / 62% 58 / 77% 128 / 76% 227 / 73% 
b)     

9-11 day 35 / 53% 31 / 41% 74 / 44% 140 / 45% 
19-21 day 25 / 38% 38 / 51% 78 / 46% 141 / 46% 

No SOI change 18  21 52 91 
Total w/o overlap 48 / 73% 54 / 72% 116 / 69% 218 / 71% 
Total Outbreaks 66 75 168 309 
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according to season or ENSO phase, a much higher POD would have been identified. In the case of a test with 
a wider interval, the POD would have been overestimated arguably.  

Nonetheless, since most severe weather days occur in the April-June time frame (607 of the 1032 events in 
Table 4) and certainly in the February-July time frame, the outcome here suggests that a large change in the 
SOI index during these months may be a signal to a forecaster to anticipate the possibility of severe weather in 
the USA one to three weeks prior to this occurrence. A similar result was found recently by Miller et al. (2020) 
who used a statistical-dynamic model of weather regimes to demonstrate skill in anticipating tornado outbreak 
days one to three weeks prior to the event. These investigations examined only tornado days while this work 
included other high impact weather as well. Additionally, this outcome is similar to the forecast value found by 
Renken et al. (2017) to anticipate extreme weather one to three weeks in advance using the BSR or EAR indexes. 

5.  Summary and conclusions 

This work examined the occurrence of major severe weather days defined as 20 or more tornado, 155 or 
more high wind (greater than or equal to 25.9 m s-1), and 135 or more hail (greater than or equal to 25.4 mm) 
and then related this to periodicity found in the time series of the SOI and the change with time of this index. 
The time period studied was the most recent 30 years (1991-2020). Using data provided by the NCEP/NCAR 
re-analyses and the severe weather archives found at the SPC in Norman, OK, the following results were 
obtained. 

• There was significant periodicity found in the time series of SOI and the change with time of this index, 
and this periodicity is similar to the results found in many other studies when analyzing mid-latitude 
teleconnection index time series. 

• There was a lag of approximately 16 days found between the time of a major change in the SOI index 
and the occurrence of severe weather in the United States when counting the days when at least one 
severe weather event occurred. 

• There was a POD on the order of 70% for major severe weather days when a 10-point change in the 
daily SOI or a 20-point change in the SOI over three days occurred one to three weeks previously when 
tested using a relatively narrow band for this lag. The results found here likely underestimated the POD 
but suggests utility in anticipating severe weather one to three weeks in advance using a teleconnection 
index such as the SOI. This result corroborates those of Miller et al. (2017) who used different 
techniques, 

• With respect to ENSO, severe weather events were preceded by 10-point changes in the daily SOI most 
often in EN years and POD was about 10 percent less in LN years. There was no ENSO variability in 
the 20-point changes in SOI over three days. 

Table 4  As in Table 1, except for all modes of severe weather reports. 
 LN EN NEU Total 

a)     
9 – 11 day 99 / 48% 140 / 49% 257 / 48% 496 / 48% 

19 – 21 day 72 / 35% 137 / 48% 243 / 45% 452 / 44% 
No SOI change 70 73 137 280 

Total w/o overlap 137 / 66% 215 / 75% 400 / 74% 752/ 73% 
b)     

9 – 11 day 106 / 51% 133 / 46% 246 / 46% 485 / 47% 
19 – 21 day 73 / 35% 125 / 43% 236 / 44% 434 / 42% 

No SOI change 63 93 165 321 
Total w/o overlap 144 / 70% 195 / 68% 372 / 69% 711 / 69% 
Total Outbreaks 207 288 537 1032 
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1.  Background 

In 2007 the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) 
introduced an alert classification system for the ENSO cycle (Kousky and Higgins 2007). The system included 
watches and advisory for warm and cold phases of the ENSO cycle. A watch is issued when conditions are 
favorable for the formation of an El Niño or La Niña within the next 6 months. An advisory is issued when El 
Niño or La Niña conditions are present, based on NOAA’s operational definitions. 

For decades, the NWS has used the Watch, Warning, and Advisory (WWA) system to alert users of 
forecasted hazards.  While it has been effective at protecting life and property, extensive social science research 
has uncovered widespread misunderstanding of the “Advisory” term. In addition, users are sometimes confused 
about how to interpret and distinguish among the large number of individual WWA “products” (e.g., Wind 
Advisory, Flood Watch, and Winter Storm Warning).  

To address these issues, the Hazards Simplification (Haz Simp) project was established and proposed a 
simple and streamlined system. The new proposed system would retain the two main headline terms - "Watch" 
and "Warning" - to alert on significant weather, water, or climate events that threaten life and/or property. The 
“Advisory” and "Special Weather Statement (SPS)" headlines would be discontinued in favor of plain language 
headlines. These new headline messages would convey information for less significant events that are not 
reaching either the “Watch” or “Warning” levels.  As it relates to the ENSO Alert System, NWS engaged 
partners and users to gather feedback on interpretation of the current ENSO Alert System’s headlines and 
potential changes to these headlines.    

2.  Methodology 

User feedback on the interpretation of current headlines in the El Niño-Southern Oscillation (ENSO) Alert 
System (Fig. 1) and potential changes to the headlines was collected via a survey during March 20 and May 19, 
2020. In particular, the survey solicited feedback on eliminating the term “Advisory”, from the Alert System, 
which will help to ensure consistency across the suite of NWS products, one of the goals of the Haz Simp 
project. 

In addition to general questions, such as job category and locations, the survey provided examples of the 
current ENSO Alert System Status headlines (A) and a proposal alternative as a replacement (B), and asked 
users to describe what the current headline meant to them, compare A and B, and select the best option.  
Affiliations identified on the survey responses were research, academia, weather forecasting, emergency 
management, water resources, among other occupations. 

3.  Major outcomes 

The survey respondents are from 57 U.S. states and territories. The greatest percentage (22.3%) were from 
the state of California (CA), followed by Texas (10.3%), Florida (7.2%), and Washington (6.3%).  Other states 
and territories contributed between 3.9% to 0.1%.  The analysis also included stratification of feedback by user 
occupation. 
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An El Niño or La Niña Advisory is issued when conditions are observed and expected to continue. Only a 
small number of external users identified the correct interpretation of the current headlines, with a slightly 
greater number of the Emergency Management community with a clear understanding of the ENSO Advisory 
definition.      

The low number of correct responses on the survey question regarding the “Advisory” interpretation (20%, 
see Fig. 2) confirms the need to better communicate when El Niño or La Niña conditions are occurring. 

Within NWS, a significant number of users indicated that they have a good understanding of the correct 
interpretation of the term “Advisory” in the headline, which was expected. With respect to proposed changes 
to remove the word “Advisory" from the headline, the overwhelming majority of partners and users (95%) that 
participated in the survey favored changes using the proposed alternative headlines. Some partners and users 
provided additional suggestions for alternatives, such as 1) “El Niño is Occurring”, 2) “El Niño is Ongoing”, 
3) “El Niño has Ended”.  

4.  Lesson learned 

The current ENSO Alert system does not 
provide information on significant hazards that 
threaten life and/or property, which is 
significantly different from the current NWS 
WWA system.  Therefore, the use of the term 
“Advisory” in the ENSO Alert system does not 
have the same concerns as the term “Advisory” 
does in the current NWS WWA system. However, 
many of the comments provided by the survey 
respondents do raise serious concerns about the 
understanding of the term “Advisory” in the 
ENSO Alert system, as well as the proposed 
changes. The recommendations at this time are to 
simplify and use terms in the Alert System that are 
easier to understand and clearly represent that 
ENSO is either occurring or has ended.  

Reference 
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Fig. 2  Example of one of the survey questions. 

Fig. 1  Example of the current ENSO Alert system (La Niña Advisory) for 11 February 2021. 
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ABSTRACT 

We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model that 
recursively predicts key atmospheric variables with six-hour time resolution. This model uses convolutional 
neural networks (CNNs) on a cubed sphere grid to produce global forecasts. The approach is computationally 
efficient, requiring just three minutes on a single GPU to produce a 320-member set of six-week forecasts at 
1.4° resolution. Ensemble spread is primarily produced by randomizing the CNN training process to create a 
set of 32 DLWP models with slightly different learned weights.  

Although our DLWP model does not forecast precipitation, it does forecast total column water vapor, and 
it gives a reasonable 4.5-day deterministic forecast of Hurricane Irma (Fig. 1). In addition to simulating mid-
latitude weather systems, it spontaneously generates tropical cyclones in a one-year free-running simulation. 
Averaged globally and over a two-year test set, the ensemble mean RMSE retains skill relative to climatology 
beyond two-weeks, with anomaly correlation coefficients remaining above 0.6 through six days.   

Our primary application is to 
subseasonal-to-seasonal (S2S) 
forecasting at lead times from two to six 
weeks. Current forecast systems have 
low skill in predicting one- or 2-week-
average weather patterns at S2S time 
scales. The continuous ranked 
probability score (CRPS) and the 
ranked probability skill score (RPSS) 
show that the DLWP ensemble is only 
modestly inferior in performance to the 
European Centre for Medium Range 
Weather Forecasts (ECMWF) S2S 
ensemble over land at lead times of 4 
and 5-6 weeks. At shorter lead times, 
the ECMWF ensemble performs better 
than DLWP (Fig. 2). 

This study has been published in 
Earth and Space Science Open Archive 
(ESSOAr) in 2021.  

References 
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Fig. 1  Fields of 500-hPa geopotential height (color shading, dm) and 
1000-hPa geopotential height (black contours at 100 m intervals 
with negative values dashed) for (a) a 4.5-day forecast and (b) the 
verification on 12:00 UTC, 11 September 2017. The blue curve is 
the 540-dm contour for Z500.  
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Fig. 2  One- or two-week averaged ranked probability skill score (RPSS; higher is better) for 850-hPa 
temperature at indicated forecast lead times. DLWP grand ensemble (blue circles) and the ECMWF S2S 
ensemble (orange triangles) averaged over the (a) globe, annual mean; (b) tropics (20ºS – 20ºN), annual 
mean; (c) NH extra-tropics (30ºN – 90ºN), mean of forecasts initialized in DJF; (d) as in (c) but for JJA. 
Only points over land are included. Error bars correspond to the 95% confidence interval determined by 
bootstrapping with 10,000 samples.  
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ABSTRACT 

Midlatitude prediction on subseasonal timescales is difficult due to the chaotic nature of the atmosphere 
and often requires the identification of favorable atmospheric conditions that may lead to enhanced skill 
(“forecasts of opportunity”).  Here, we demonstrate that an artificial neural network (ANN) can identify such 
opportunities for tropical-extratropical circulation teleconnections within the North Atlantic (40°N, 325°E) at a 
lead of 22 days using the network's confidence in a given prediction (Fig. 1).  Furthermore, layer-wise relevance 
propagation, an ANN explainability technique, pinpoints the relevant tropical features the ANN uses to make 
accurate predictions.  We find that layer-wise relevance propagation identifies tropical hot spots that correspond 
to known favorable regions for midlatitude teleconnections and reveals a potential new pattern for prediction 
in the North Atlantic on subseasonal timescales.   

Fig. 1  ANNs are trained 100 times with random initialized weights to predict the sign of the z500 anomalies 
(40°N, 325°E) at 22 days following the tropical OLR anomalies. (a) Histograms of the testing prediction 
accuracy for all 100 models, where dark teal represents the distribution of all predictions and light teal 
represents the distribution of the 10% most confident predictions. The corresponding colored vertical dashed 
lines indicate a threshold for what is expected by random chance. The top 10% most confident prediction 
accuracies (light teal) are shifted towards higher accuracies compared to the distribution with all predictions 
(dark teal), which demonstrates that in general, higher model confidence leads to substantially enhanced 
prediction accuracy.  (b) Accuracy of one particular model as a function of the percent most confident 
predictions for training and validation (black) and testing (light teal) data.  The testing accuracy barely 
outperforms the random chance 90% confidence bound (light teal dashed line) for all predictions (“all") while 
the skill is substantially larger than random chance for the top 10% of predictions.  Accuracy increasing with 
increasing model confidence is also apparent in the training and validation data.  Together, (a) and (b)  
illustrate that model confidence and prediction accuracy generally increase together and therefore, can be 
used to identify forecasts of opportunities, or periods of enhanced prediction skill.   

This study has been published online in Earth and Space Science Open Archive in 2021.  
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1. Background and goal 

 The generation of a multi-model ensemble (MME) is a well-accepted approach to improving the skill of 
forecasts from individual GCMs. There are two common approaches to making an MME, viz., combining the 
individual ensemble forecasts with equal weights, or weighting them according to prior performance (Acharya 
et al. 2011a; Acharya et al. 2011b). Regardless of which combination method has been used, numerous studies 
have shown that multi-model ensembles methodologies exhibit increased prediction skill when compared to 
single-model forecasting (Casanova and Ahrens 2009; Weigel et al. 2008). Although Machine learning (ML) 
has been used extensively in weather and climate forecasting since the mid-1990s, recently there has been 
increasing interest in exploring the use of ML for MME generation to increase seasonal forecast skill. The 
primary goal of the current study is to create guidelines for the proper usage of ML in MME generation and to 
identify its potential value-added over current methods.  

2.  Methodology 

A simple form of ML, the artificial neural network (ANN), is used for this study. Single-hidden-layer 
feedforward network (SLFN), as one of the most popular feedforward ANNs, has been extensively studied from 
both theoretical and practical perspectives for its learning capacity and fault-tolerance. However, the efficiency 
of SLFN-based methods is highly dependent on appropriate tuning of their adjustable hyperparameters, e.g., 
transfer function, learning rate, and the number of nodes in each layer. There are also several disadvantages to 
traditional SLFN-based methods, including long computation time, over-fitting, and vanishing gradient. 

To overcome such shortcomings, a 
novel learning algorithm for SLFN 
called extreme learning machine (ELM) 
has been proposed by Huang et al. 
(2008). In the proposed algorithm, the 
input weights and hidden biases are 
randomly chosen, and the output 
weights are determined analytically by 
using the Moore-Penrose (MP) 
generalized inverse. The basic principle 
which distinguishes ELM from the 
traditional neural network methodology 
is that the parameters of the feed-
forward network are not required to be 
tuned, unlike SLFN-based methods, in 
which weights and biases require 
tuning. The implementation procedure 
of ELM for making MME includes 
several sequential steps: (a) selecting 
input and output neurons, (b) scaling the 

Fig. 1  Flow chart illustrating the steps of implementation procedure of 
Extreme Learning Machine for making Multi-Model Ensemble 
approach. 
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neurons, (c) selecting the activation 
function, (d) training and testing of the 
model. This entire methodology is 
summarized in a flow chart presented in 
Fig. 1. 

3.  Results and discussions 

To examine the performance of the 
proposed method compared with the 
traditional MME method, including 
simple arithmetic mean (EM) of the 
individual ensemble forecasts 
(combining with equal weights) as a 
benchmark, we use the summer (Jun-
Jul-Aug-Sep) monsoon rainfall over 
Bangladesh as a case study during 
1982-2018. The lead-1 hindcasts from 
seven General Circulation Models 
(GCM) belonging to the North 
American Multi-Model Ensemble (NMME) project phase 2 (Kirtman et al. 2014) were selected along with the 
Enhancing National Climate Services for Bangladesh Meteorological Department (ENACTS-BMD) dataset for 
observational reference (Acharya et al., 2020) for this study.  

The year-to-year rainfall time series of observation and two MME methods (cross-validated) have been 
plotted in Fig. 2. It is clearly visible that the EM underestimates the observed rainfall and has a substantial mean 
bias.  Not only does ELM have less mean bias, it also captures the inherent variability of observed rainfall.  

 Further, to examine the 
performance of ELM and EM-based 
MME, root mean square error (RMSE), 
and Index of agreement (IOA) along 
with mean (climatology) and standard 
deviation (inter-annual variability) are 
computed and represented in Table 1. 
The observed mean and standard 
deviation are also presented in the same 
table. ELM out-performed EM by all skill metrics.   Notably, when compared to EM, ELM’s inter-annual 
variability is significantly closer to that of the observed rainfall, with a much smaller RMSE score and higher 
IOA.    

4.  Concluding remarks 

This study focuses on developing an improved multi-model ensemble (MME) scheme using machine 
learning. For this purpose, the ELM technique acting as a fast, efficient substitute for SLFN is applied. Results 
strongly indicate that, when compared with the traditional MME scheme, the ELM method significantly 
enhances forecast skill. 
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Fig. 2  Precipitation time series (mm) from observation and cross-
validated two MME schemes, viz., EM and ELM during 1982–2008. 

Table 1  Mean (climatology) and standard deviation (inter-annual 
variability), root mean square error (RMSE), and Index of 
agreement (IOA) of observation, EM and ELM during 1982–2008. 
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SUMMARY 

We integrated sectoral modeling scheme based on the NOAA CFSv2 forecasts to provide numerical 
guidance for Food Security in the upper Blue Nile River Basin and delivered to decision makers (Haider et 
al. 2019). Accurate seasonal forecasts are necessary for agricultural decision-making including selection of 
crop type, planting date, and scheduling irrigation well in advance. Given the sensitivity of crops to 
temperature thresholds, this study performs a cost-loss analysis on the decisions and actions of hypothetical 
farm managers with respect to yields of maize crop. Three types of statistical transformations are used for 
bias correction. All the methods reduce error and increase anomaly correlation coefficient when compared 
to the raw CFSv2. Equi-distant CDF matching (EDist) performs marginally better than the other two 
methods to reduce biases. Accordingly, EDist reduces expenses significantly and increases relative 
economic value of the crop. 

1. Introduction 

 Seasonal forecast is being used for agricultural decision making including selecting crop type and planting 
time well in advance and scheduling irrigation as per crop water requirement and future availability of water. 
Forecast guidance with enough skill will ensure correct decisions for crop management. There is no consensus 
on the best decisions to cope up with adverse weather condition. There are several mitigation options including 
selecting appropriate crop type, planting date; these are referred to as pre-factor strategies to differentiate with 
the post-factor strategies, which include supplying nutrients, additional water irrigation. A third category of 
mitigation strategy is to replant. The difficulty of replanting is that it has to be done within a short period after 
the first planting so that it remains within the crop calendar. As a general rule, crop yields increase with 
temperature up to a threshold beyond which yields decline significantly (Zhu et al. 2018). The decision makers 
select the mitigation options based on their perception of weather condition e.g., precipitation, temperature, 
solar radiation during the planting period. This study focusses on the mitigation measures related to temperature 
forecast. The mitigation plans against potential temperature hazards rely on knowing the forecast skill and the 
evolution and amplitude of predicted anomalies. Even if the decision makers know these two parameters (the 
timing and amplitude of the anomalies), there are economical constraints to execute the mitigation options. 
Therefore, cost-effective strategies must be determined. In this study, we research the impact of forecast bias 
correction on the reduction of mitigation cost of a crop, all things being equal.  
2.  Study area and data 

The study is performed for the Blue Nile River Basin in Ethiopia (Haider et al. 2019). The main crops for 
this area include maize, wheat, millet, teff and sorghum. NOAA CFSv2 forecast (Saha et al. 2014) dataset 
initialized on April 01, 2019 is used. There are 6-hourly data out to seven months. The training dataset includes 
6-hourly hindcast data and corresponding NCEP GDAS data during 2012 through 2018. Validation is done for 
the wet season (Apr-Oct) of 2019. The economic analysis is done for maize crop.  
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3.  Methodology 

3.1  Bias correction of temperature 

Bias correction methods typically apply a 
statistical transfer function to the raw forecast so 
that its Cumulative Distribution Function (CDF) 
matches that of corresponding reference data. 
Three types of statistical transformations are used 
for this study. These are non-parametric 
(Gudmundsson et al. 2012) and equi-distant CDF 
matching (Li et al. 2010), and polynomial fitting-
based transformation (Brocca et al. 2011) denoted 
by NPar, EDist and PFit, respectively. All the 6-
hourly training datasets for a given month are 
used to build the statistical transfer function for 
CDF matching.  
3.2  Performance measures 

The performance measures used in this study are Mean Absolute Error (MAE), Bias, and Anomaly 
Correlation Coefficient (ACC, Potts et al., 1996), given by: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                          (𝑖𝑖) 

𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 =  
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                         (𝑖𝑖𝑖𝑖) 

𝑀𝑀𝐴𝐴𝐴𝐴 =  
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − �̅�𝑥)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2 ∑ (𝑦𝑦𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

         (𝑖𝑖𝑖𝑖𝑖𝑖) 

where yi = raw or bias-corrected forecast, xi = reference (observation), and n = sample size.  
3.3  Economic analysis 

3.3.1 Temperature threshold and mitigation tools 

Crop growth varies as a function of 
temperature in the growing stage. Some crops are 
sensitive to the temperature range at different 
growth stages. The temperature threshold above 
which maize crop yield is reduced has been 
reported to be 303.15 K for Africa (Zhu et al. 
2018; Commuri and Jones 2001). This is a key 
component in the risk management perspective 
(see the flow chart in Fig. 1).  

As part of mitigating strategies, some farmers 
reported that they replanted Sorghum fields twice after the seedlings died or did not germinate because of 
climate shocks. Some other farmers switched from sorghum to teff to mitigate such events. Once planted, 
application of different nutrients to the plants can reduce the stress when temperature threshold is exceeded for 
a crop. 

3.3.2  Contingency table and cost-loss components 

The cost-loss analysis from Zhu et al. (2002) is used in this study. The benefit of using forecast information 
in agricultural decision can be assessed from the contingency table (Table 1a and 1b).  

Table 1a  Contingency table   

  Observed 

Fo
re

ca
st   Yes No 

Yes Hits (h) False Alarms (f) 

No Misses (m) Correct Rejection (c) 

Table 1b  Cost and loss components 

 

  Observed 

Fo
re

ca
st 

  Yes No 

Yes Mitigated loss,  
M = C + Lu 

Cost = C 

No Loss, L = Lp + Lu Cost = 0 

Fig. 1  Flow chart of traditional and risk management 
perspective of numerical guidance. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

30 

By knowing the frequencies of the four 
outcomes (Table 1a) and the corresponding cost-
loss components (Table 1b), the expected expense 
of using a forecast system (raw or bias corrected) 
can be calculated as:  

𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
= ℎ(𝐴𝐴 + 𝐿𝐿𝑢𝑢) + 𝑓𝑓𝐴𝐴 + 𝑚𝑚�𝐿𝐿𝑝𝑝 + 𝐿𝐿𝑢𝑢�       (𝑖𝑖𝑖𝑖) 

The expected expense associated with using 
only climatological information can be calculated 
as:  

𝑀𝑀𝑓𝑓𝑐𝑐𝑖𝑖𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓 =  �̅�𝑜𝐿𝐿𝑢𝑢 + 𝑀𝑀𝑖𝑖𝑛𝑛��̅�𝑜𝐿𝐿𝑝𝑝,𝐴𝐴�             (𝑖𝑖) 

The minimum expense of a user, given a 
perfect forecast for a particular event is given as: 

𝑀𝑀𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �̅�𝑜(𝐴𝐴 +  𝐿𝐿𝑢𝑢)                     (𝑖𝑖𝑖𝑖) 

where C is the total cost on the user’s side in case 
of a false alarm, h, f, and m are the frequencies of 
the four outcomes mentioned in Table 1a, �̅�𝑜  is 
climatological frequency of an event, L = Lp + Lu is the total loss incurred if the forecast system missed to 
predict an event that happened and is given as the sum of the loss that can be protected against (Lp) and the 
remaining unprotectable loss (Lu). 

If a user takes preventive action against the potential loss, the user will incur a cost (C<L). Then if the event 
hits, in addition to C, the user may incur some reduced, unprotectable loss (Lu). Summation of these two terms 
is called mitigated loss, M.  Typically, 

𝐴𝐴 ≤ 𝑀𝑀 < 𝐿𝐿                                                                  (𝑖𝑖𝑖𝑖𝑖𝑖) 

3.3.3  Relative economic value (V) 

𝑉𝑉 =  
𝑀𝑀𝑓𝑓𝑐𝑐𝑖𝑖𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑀𝑀𝑓𝑓𝑐𝑐𝑖𝑖𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑀𝑀𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                                      (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

A forecast system associated with the expected expense equal to (larger than) that attainable using 
climatological information only will have zero (negative) value of V.  
4.  Results 

4.1  Bias correction of temperature 

 The forecast CDFs are mapped to match 
those of the ground-truth (Fig. 2). Overall, all the 
bias correction methods reduce MAE and bias, 
increase anomaly correlation coefficient when 
compared to the raw CFSv2 (Table 2). Overall, all 
the methods reduce error. EDist performs 
marginally better than the other two methods. 

4.2  Economic benefit 

 Tables 3 to 5 show the frequencies of the forecast actions and outcomes for the raw and corrected forecast 
by two methods (NPar and EDist). NPar and Gsn increase the number of “hits” from 13 in the raw forecast to 
42 and 43, respectively. Similarly, they (NPar and EDist) reduce the number of “misses” from 57 in the raw 
forecast to 28 and 27, respectively. On the other hand, NPar and EDist increase number of “False alarms” form 
1 in the raw forecast to 8 and 10, respectively. Also, there is a slight reduction of “correct rejections” with the 

Fig. 2  CDF matching for June, 2019 initiated on 2019040100 
and corresponding observation (GDAS) at a site. Bias 
correction by one method (EDist) is shown here. The 
other methods show similar performance. 

Table 2 Summary statistics for raw and bias corrected 
forecast. In bold, the minimum value of MAE and bias, 
and the maximum correlation. 
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bias correction. Although increase in the “False alarms” and a little decrease in the “Correct rejection” in the 
bias corrected products incur additional cost on the user end, it is compensated by the increased benefit 
considering the large gain in the number of “hits” and large decrease in “misses” with the bias corrected ones 
resulting in net positive gain.  

Also, the value of C is less than that of 
M or L (see equation iv). Consequently, the 
expenses show a reduction (40%) from 
nearly $2.5 M with raw forecast to nearly 
$1.5 M with the bias corrected forecast 
products per 100 hectares of land (Fig. 3). 
EDist shows the minimum expenses. The 
relative economic value also increases up 
to 0.67 with the bias corrected forecasts, 
EDist being marginally better than the 
other two methods. 

5.  Conclusions 

All the bias correction methods reduce 
biases in raw forecast significantly and 
improve the anomaly correlation 
coefficient. EDist performs marginally 
better compare to the other methods to 
reduce forecast bias and increase anomaly 
correlation.  Expenses on the farmer’s end are reduced up to 40% and the relative economic value of the crop 
increases up to 0.67 with the bias correction methods compared to the raw forecast. Marginally better 
performance is obtained with EDist compared to the other methods to reduce expenses and increase relative 
economic value of the crop. 
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1. Introduction 

 Officially, the Bangladesh Meteorological Department (BMD) is responsible for providing operational 
seasonal and monthly monsoon climate predictions to the climate information users community. During the 
past years, BMD used a subjective consensus approach based on meteorologists' experience to generate 
products using all available Global Producing Center’s (GPCs) forecasts and other available information. This 
subjectively-based forecasting approach, however, has been found to be a poor fit for many decision-makers, 
who are interested in more reliable and objective forecasts. There is an increasing demand for high-resolution 
seasonal forecasts over Bangladesh at sufficient lead times to allow response planning from users in agriculture, 
hydrology, disaster management, energy, health, and other sectors.  This demand has prompted the research for 
the development of an objective seasonal forecast system following the World Meteorological Organization’s 
(WMO) recently published seasonal-forecast guidance (WMO 2020).  The guidance advocates the use of an 
objective seasonal forecast procedure, defined as a traceable, reproducible, and well-documented set of steps 
that allows the quantification of forecast quality.  In response, an objective forecasting system named NextGen 
(Next Generation) was developed for seasonal forecasting for Bangladesh, similar to others recently developed 
around the world (e.g., Acharya et al. 2020a).  As of October 2019, this new forecast system is used in real-
time by the BMD for seasonal predictions that can be found at http://live.bmd.gov.bd/p/ThreeMonth283/.  In 
this study, we describe the co-design, co-development, and skill assessment of this NextGen system.  

2.  Methodology 

This new forecast system is based on a calibrated multi-model ensemble (CMME) process using state-of-
the-art general circulation models (GCM) from the North American Multi-Model Ensemble (NMME) project 
(Kirtman et al. 2014). A canonical-correlation-analysis (CCA)-based regression is used to calibrate the raw 
outputs from the GCMs; then the individually-calibrated GCMs are combined with equal weight to make a final 
CMME prediction. For observational reference, a high-resolution gridded (0.05° × 0.05°) rainfall and 
temperature named ENACTS-BMD dataset (Acharya et al. 2020b) used in this study. This entire methodology 
is summarized in a flow chart presented in Fig. 1.  

3.  Results and discussions 

To examine the performance of this new forecast system, root mean square error (RMSE), Spearman’s 
correlation coefficients (CC), and two alternatives forced-choice score (2AFC-score) are computed. However, 
this study only focuses on the skill of this forecast system for the summer monsoon season during 1982-2018 
as it is the main rainy season for Bangladesh. To assess the performance of CMME, its skill is compared with 
the un-calibrated multi-model ensemble, viz., UMME (averaging un-calibrated individual model) which can be 
used as a benchmark.   

In general, CMME out-performed UMME in all skill scores (Fig. 2). The RMSE is much lower in CMME, 
especially in north and south-eastern Bangladesh. Considering CC, UMME shows positive values only over a 
small area over the northern and drier areas of Bangladesh, whereas CMME shows widespread positive values, 
except over a small area over the more mountainous southeastern part of the country where the correlations are 
close to zero or slightly negative.   In addition, CMME’s CC is higher compared to most calibrated individual  
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Fig. 1  Flow chart illustrating the steps of generation of seasonal forecast using calibrated multi-model ensemble 
approach. 

Fig. 2  (a) Root mean square error, (b) Spearman’s Correlation coefficient and (c) Generalized Discrimination 
Score (2AFC) for Un-calibrated (upper) and Calibrated (lower) multi-model ensemble over the period of 
1982–2018. 
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models. The 2AFC score values higher than 50% are dominant in CMME, except for the same region over the 
southeast. These results suggest an overall improvement of skill in monsoon rainfall prediction when CMME 
is used; however, sub-national differences are also observed, which can be associated with the complex local-
scale precipitation mechanisms and the high spatial variability in climatological rainfall in Bangladesh.      

4.  Concluding remarks 

The NextGen seasonal forecast is based on a calibrated multi-model ensemble (CMME) process being 
adopted by BMD in recent times to upgrade their traditional forecast system to an objective forecasting system 
following the WMO’s recently published seasonal-forecast guidance. Results strongly indicate that the CMME 
system is significantly improved compared to the uncalibrated system. 
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1. Introduction 

The Climate Prediction Center (CPC) produces probabilistic above or below normal precipitation outlooks 
on a variety of timescales and forecast leads. The first step in producing such an outlook is to find an appropriate 
threshold to define “normal” precipitation. A robust normal provides the proper context to end users of CPC’s 
outlooks. Further, it is needed to make meaningful verifications. However, defining a normal from a 
climatological distribution of precipitation is not a trivial exercise because precipitation is non-continuous, 
positively skewed, and often characterized by alternating periods of rainy and dry conditions that can either be 
attributed to noise or physical drivers. A standard practice at CPC is to estimate the median climatology for 
precipitation as opposed to the mean, which can be sensitive to outliers. The median describes the “middle 
value” of an ordered set of values. For non-Gaussian variables, it does not describe the average value, nor can 
the variance about a median be easily described. As such, whether the median is estimated from an model’s 
ensemble dataset or from observations offers unique challenges. Another complicating factor is that the 
distribution of precipitation can vary by region, time of year, and timescale of interest.  

Here, we will discuss some of the challenges that arise when calculating precipitation climatologies in both 
observations and models, while proposing some potential methods that can be employed to overcome them. 
Our principal focus will be precipitation accumulations during 14-day periods, which is most relevant to CPC’s 
Week 3-4 precipitation outlook. We would like to emphasize that our discussion is neither meant to be 
representative of the practices currently being employed at CPC nor conclusive. We wish simply to bring 
awareness to the challenges we have encountered while calculating precipitation medians in the hope of 
sparking dialogue and debate about the best practices to generate robust Week 3-4 precipitation climatologies 
in both observations and models. 

2.  Data 

Observed climatologies of precipitation derive from CPC’s Global Unified Gauge-Based Analysis of Daily 
Precipitation (Chen et al. 2008). Model climatologies for the 1999-2015 period are derived from reforecasts of 
the ECMWF (Vitart et al. 2017) and the models participating in the Subseasonal Experiment protocol (SubX; 
Pegion et al. 2019), including the ECCC GEM, EMC GEFS, ESRL FIM, NASA GMAO GEOS, NCEP CFS, 
NRL NESM, and RSMAS CCSM4.   
3.  Discussion 

In the following, we will list several challenges that the calculation of precipitation climatologies poses and 
make a few brief discussion points on each. 

a.  Precipitation is inherently noisy.  

Figure 1a depicts daily precipitation over the 2010-2015 period for a grid point near San Francisco. It is 
clear that San Francisco has dry summers and wet winters. However, there is a great deal of noise on daily, 
subseasonal, and interannual timescales for this location as well. It is possible to smooth some of the noise by 
summing over consecutive and overlapping 14-day windows, yet the subseasonal and interannual variability 
remain (Fig. 1b). This introduces another challenge in calculating a robust climatology in datasets with limited 
samples, such as the reforecasts analyzed here (1999-2015). For example, climate signals that drive interannual 
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and subseasonal precipitation 
variability, such as ENSO and the MJO, 
may be dominant in one phase or 
another during shorter climate periods. 
One can envision a particular phase of 
the MJO occurring, by chance, more or 
less frequently for a given calendar day 
in a shorter climate period than it would 
in a longer climate period. 

b. Precipitation has non-Gaussian 
distributions, with medians less than the 
means.  

Figure 2 presents the mean and 
median climatologies along with their 
differences for accumulated 
precipitation across CONUS/AK for the 
14-day windows beginning January 16th 
and July 16th during the 1999-2015 
period. To enhance the sample size of 
the distribution beyond 17 values, all 
consecutive, overlapping 14-day 
periods that begin within +/- 9 days of 
January 16th and July 16th are included 
in their respective distributions. While 
+/- 9 days is arbitrary, it is arguably 
long enough to substantially boost the 
sample size of the distributions, despite 
possible serial correlations. 
Furthermore, it is short enough that 
seasonality does not have a significant 
impact. The non-Gaussian nature of 
precipitation distributions is clearly on 
display with nearly all grid points 
having means greater than their 
medians. Indeed, over large swaths of the country, the mean exceeds the median by over 10 mm, which has 
important consequences for verifications of precipitation. For example, if the mean as opposed to the median 
were used as the threshold to define normal precipitation in a two category system, then most 14-day windows 
would be classified as below normal. Thus, one could opine that it would behoove the forecaster to forecast 
below normal more often than above if the reference forecast of choice was a climatology split evenly between 
above and below normal. However, using the median as a threshold has implications as well. Dry areas such as 
California during July have medians of 0 mm, which completely precludes the possibility of issuing a below 
normal forecast. 

c.  Raw annual cycles of precipitation climatologies may be non-physical. 

Figure 3 shows the climatological annual cycles of medians for accumulated, 14-day precipitation for a grid 
point near San Francisco. The thick black line in Fig. 3a represents the raw annual cycle for the 1999-2015 
period. It is characterized by medians of 0 mm during summer and non-zero medians during winter and the 
shoulder seasons. Interestingly, there are two large peaks occurring during December and February, surrounding 
a relatively dry spell during mid-winter. Also, there are two additional but smaller peaks during the fall and 
spring. Upon examination of this cycle, one may ask whether it has physical meaning. In a raw annual cycle 
that has been averaged over many years, one would expect seasonality to be dominated by the annual revolution 

Fig. 1 Observed (a) daily and (b) 14-day accumulated precipitation from 
January 1, 2010 to December 31, 2015 for a grid point near San 
Francisco, CA (38°N, 238°E) are shown, as derived from CPC’s 
Global Unified Gauge-Based Analysis of Daily Precipitation. 
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of the Earth around the Sun along with other plausible physical drivers such as the monsoon and the migration 
of the jet. With a short enough climate period, random variability associated with synoptic-scale cyclones, the 
MJO, convection, etc., could happen to align on a given calendar day, producing the erratic peaks on display in 
Fig. 3a. In fact, when deriving the annual cycle over a longer 1979-2019 climate period, the smaller peaks 
during fall and spring completely disappear and the mid-winter dry spell is no longer as dry, resulting in a much 
smoother raw annual cycle which is likely more representative of the “true” climatology than that derived from 
the shorter 1999-2015 period. However, reforecasts datasets often have small sample sizes which obviates a 
smoothing of their raw annual cycle through the inclusion of more years. Thus, one must employ mathematical 
techniques to smooth, and they present their own set of challenges.  
d.  Smoothing the raw annual cycles of precipitation risks being arbitrary. 

A common technique to smooth raw annual cycles and find the “true” climatology is to subject them to a 
Fourier analysis and then retain the mean and a specified number of n harmonics. This technique is a standard 
practice at CPC for deriving a smoothed climatology, but there is some debate concerning the optimal number 
of harmonics to retain. The colored lines in Figure 3 represent smoothed annual cycles with n = 1 to 14 
harmonics retained. For small n, the multiple peaks during winter completely disappear, while for larger n, the 
raw cycle is nearly exactly reproduced by the smoothed cycle. Naturally, one may ask if there is an ideal number 
of harmonics that should be retained. We would argue that the number of cycles retained should be a reflection 
of the physical drivers that have a strong footprint on the raw annual cycle regardless of the length of the climate 
period in question. As discussed earlier, the secondary peaks in the raw annual cycle disappear using a longer 
1979-2019 climate period, suggesting they might be non-physical and should not be considered normal for 
those calendar days. Alternatively, they could in fact be artifacts of low frequency events that should not be 
smoothed away. For example, the mid-winter dry spell, while less pronounced, is still evident and could be a 
reflection of the mid-winter suppression of the Pacific Jet. Therefore, perhaps an n should be chosen to 
reproduce the primary peaks, but perhaps not an n large enough to exactly reproduce them and the secondary 

Fig. 2. 14-day precipitation climatologies, in terms of their means, medians, and differences, are 
shown as derived from the distribution of data gathered from the 14-day periods beginning 
+/- 9 days from (a-c) January 16th and (d-e) July 16th over the 1999-2015 period. 
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peaks out of fear of overfitting. After 
all, it is possible that using even a longer 
climate period than 1979-2019 may 
produce an even smoother raw annual 
cycle.  

There are a few additional issues to 
note when smoothing. First, in the 
example provided with Fig. 3, the 
smoothed cycles represented by n < 4 
are qualitatively similar for both 
climate periods. Thus, one could argue 
that using a small n not only alleviates 
the risk of overfitting, but it also works 
across different climate periods. 
However, for grid points like those near 
San Francisco, other physical processes 
may be at play that necessitate a higher 
number of harmonics and therefore the 
optimal n may vary from grid point to 
grid point. Second, a potential flaw with 
harmonic smoothing arises during 
completely dry periods with medians of 
0 mm, as the summation of the 
harmonics will produce a smoothed 
cycle with artificial, non-zero values 
during those periods. A simple solution 
is to attempt to objectively set those 
values to zero when the raw annual 
cycle indicates they should be.  

e. The calculation of precipitation 
medians from reforecasts is not a trivial 
task. 

To calculate the precipitation 
medians from the reforecasts, we follow 
a method that is similar in concept to 
that described by Pegion et al. (2019). 
Essentially, to create a distribution from 
which to extract the median for a given 
model, all ensemble members that have initialization dates within +/- 9 days of a particular calendar day are 
collected across all reforecast years. For example, NCEP CFSv2, which has reforecasts from 1999-2015 with 
four daily ensemble members, would have a distribution with 1292 values (17 years x 19 calendar days per year 
x 4 members per calendar day). Unlike, NCEP CFSv2, most models do not have reforecasts that are initialized 
daily. Thus, the +/- 9 calendar day window allows a distribution to be created for a given calendar day even if 
the model does not have any initializations that fall on that day. Because these distributions are both grid point 
and lead time specific, one can imagine that the computational expense of calculating the medians is relatively 
high. 

Figure 4 displays the raw annual cycle of reforecast-derived medians (colored lines) juxtaposed against the 
observed raw annual cycle from the 1999-2015 (black lines) and 1979-2019 (gray lines) periods. The 
corresponding dashed black and gray lines represent the smoothed annual cycles using n = 3 harmonics. In Fig. 
4a, the reforecast medians are calculated using the first 14 days of lead time (Week 1-2) while Fig. 4b uses the 

Fig. 3  Climatological 14-day precipitation medians are shown for a grid 
point near San Francisco, CA (38°N, 238°E) for (a) the 1999-2015 
period and (b) the 1979-2019 period. The thick black line represents 
the raw annual cycle without smoothing while the thin colored lines 
represent smoothed cycles with the mean and 1 through 14 
harmonics retained. Values during summer when the smoothed 
cycles are non-zero have been set to zero before plotting. 
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following 14 days of lead time (Week 
3-4). There are several interesting 
features that can be discerned from this 
figure. The models clearly have biases 
– sometimes with medians greater than 
observations and sometimes less. These 
biases vary as a function of model, 
calendar day, lead time, and grid point. 
Interestingly, the models during their 
Week 1-2 reproduce the observed raw 
annual cycle for the 1999-2015 period. 
The four peaks and mid-winter dry spell 
are visible for nearly each model. 
Because the reforecasts are expected to 
reproduce the observed weather at 
Week 1-2 with some fidelity, one would 
expect their climatologies to more or 
less reproduce the observed 
climatology. However, these features 
largely disappear in the modeled 
climatologies derived from Week 3-4. 
At this lead, predictability that derives 
from the atmospheric initial conditions 
is lost to noise. Thus, one may ask 
which climatology is more 
representative of a “true” precipitation 
climatology – the observed or that 
modeled at Week 3-4. While, we do not 
have an answer to this question, Fig. 4b 
does show that the raw annual cycles 
derived from the models at Week 3-4 
generally match the smoothed cycles 
derived from observations. Thus, there 
is likely important information that can 
be gleaned from both observations and 
model space if one wishes to determine 
the “true” precipitation climatology for 
a given location. We would also expect 
that bias correction and calibration 
techniques would help to align model 
data with the observed record. 
However, any nuanced, non-Gaussian behavior that could be meaningful for individual grid points would be 
lost because calibration methods often treat all variables with the same correction technique, regardless of the 
underlying distribution for a given grid point.     

4.  Conclusion 

Here, we have discussed various challenges we wrestle with at CPC when defining normal precipitation 
with medians for 14-day periods. In general, we appreciate that estimating climatologies is simply that – an 
estimate. However, in the arena of forecasting weather and climate, forecasting is in lock-step with verification. 
Understanding the skill of one’s forecast will be inherently linked to understanding the climatological 
distribution for which the threshold is defined. The points we have raised are neither meant to be all-inclusive 
nor conclusive. Rather, we wish to raise awareness of some of the pitfalls that are present when working with 

Fig. 4  Climatological 14-day precipitation medians are shown for a grid 
point near San Francisco, CA (38°N, 238°E). In both (a) and (b), the 
solid black and gray lines represent the raw annual cycles for the 
1999-2015 and 1979-2019 periods, respectively, while the dashed 
black and gray lines are the smoothed versions of these raw cycles 
using n = 3 harmonics. The colored lines are the raw cycles derived 
from the subseasonal models for their (a) Week 1-2 and (b) Week 
3-4 lead times. Values during summer when the smoothed cycles are 
non-zero have been set to zero before plotting. 
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a non-Gaussian, noisy variable such as precipitation. The hope is that this heightened awareness will lead to the 
development of robust, meaningful climatologies that are useful to the research and forecasting community. 
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1. Introduction 

 Extreme rainfall events have large societal impacts, and advance warning of their occurrence is valuable. 
However, numerical weather prediction (NWP) models are known to have seasonally and regionally varying 
biases addressed with a variety of post-processing methods to calibrate probabilistic and deterministic forecasts. 
These methods apply corrections that depend on target period and lead time only, and not on the state of 
the represented processes. In our work, we explore process-based calibration methods that depend on the 
background forecast state (e.g., temperature or moisture related quantities) and whose corrections vary from 
one forecast to another.  In particular, we focus on week-2 (8-10 day lead time) forecasts over the Contiguous 
United States (CONUS) of the higher quantiles (85th percentile) of the 3-day accumulated precipitation 
distributions in the Subseasonal experiment (SubX) models. 

2.  Data and methodology 

We consider data from the EMC/GEFSv11 model from the SubX re-forecast dataset, with 11 ensemble 
members and a weekly start date (Zhou et al. 2016; IRIDL). For the observational dataset, we include data from 
the North American Regional Reanalysis (NARR, Mesinger et al. 2006), which is then coarse-scaled to match 
spatial and temporal resolution of the GEFS data.  

We first extract both forecast (GEFSv11) and observed (NARR) precipitation climatologies for the quantity 
of interest, the 3-day accumulated 85th percentile precipitation ( 𝐼𝐼3𝑑𝑑, 85𝑡𝑡ℎ) for each calendar day. In particular, 
the 85th percentile of the observed data, is extracted by pooling a 31-day moving window centered on the day 
of interest. 

 For the forecast climatology, given the discrete grid of the start dates of the model, for each calendar day 
we pool values from a range of lead times (L), from 4 to 33 days. We evaluated climatologies for a variety of 
L ranges, and they did not appear to vary as a function of L, therefore we have set the L range equal to 4-33 
days. We also smooth the climatology through the use of 3 harmonics as follows:  

𝐼𝐼 = exp�𝑎𝑎0 +∑ (𝑎𝑎𝑘𝑘 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 ⋅ 𝑠𝑠𝑛𝑛 ⋅ 𝑥𝑥) + 𝑏𝑏𝑘𝑘 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 ⋅ 𝑠𝑠𝑛𝑛 ⋅ 𝑥𝑥))3
𝑘𝑘 �     

with nu =2 ⋅ 𝜋𝜋/365.25, x = day of the year. 

The correlation across forecast and observed climatologies (Fig. 1a) is very high, with the majority of the 
domain displaying a 𝜌𝜌 higher than 0.8. Three areas are anti correlated, two probably caused by some orographic 
effect, following the Appalachian range and by the Rockies, one, instead, localized on the coastal area of Texas. 
These features are intriguing, but we leave them for future investigation. Finally, we validate the GEFSv11 
climatology by calculating the expected probability of exceedance of climatology (𝑝𝑝𝐼𝐼>𝑥𝑥𝑐𝑐) of the forecast data 
(both in sample, using the re-forecast data, and out of sample, using the real time forecast). With respect to the 
in sample forecast, 𝑝𝑝𝐼𝐼>𝑥𝑥𝑐𝑐  is for the majority of the domain around 0.15 (complement to 0.85), and only 
systematically lower in the western part of the CONUS. 



LEPORE ET AL. 
 

45 

3.  Week-2 uncalibrated GEFSv11 forecast skill of 3-day accumulated precipitation exceeding the 85th 
percentile 

Once the climatologies are calculated, we can extract the observed and forecast exceedances of such 
climatologies and evaluate the uncalibrated forecast.  In particular, we do so for an L=8-10 days. For the 
uncalibrated product, the CONUS-wide reliability curve (Fig. 2a) lies just above the no-skill line, the Brier skill 
score (BSS; Mason 2004) for the whole 
CONUS (Fig. 2b), shows an annual 
value (red circle) just barely above zero, 
and a clear seasonal dependence, with 
higher values in the cooler months and 
negative (no-skill) values in the warmer 
ones. In particular, months with 
negative BSS values are May to 
September. Finally, panels c) and d) 
report the spatial distribution of BSS 
(each grid point’s skill is calculated on 
a 7x7 kernel): the western US has a 
higher skill both at the Annual scale and 
in the more problematic months 
(May—August), with the less skill 
areas consistently located in the 
continental domain, and extending to 
the whole eastern US for the warmer 
months. These results represent our 
starting point for assessing the benefit 
of new calibration methods to the 
forecast skill of the exceedance of 85th 
percentile of the 3-day accumulated 
precipitation.   

4.  Proposed calibration method 

We focus on the ensemble probabilities of exceedance of the 85th percentile of the 3-day accumulated 
rainfall for L=8-10 days, for the months May to August. We calibrate them using a spatially varying multivariate 
Logistic Regression. In a logit model (Hosmer and Lemeshow 2000), the natural logarithm of the odds ratio 
( 𝑝𝑝
1−𝑝𝑝

) is related to explanatory variables by a linear model, which results in: 

  𝑝𝑝 =  𝑒𝑒{𝛽𝛽0+ 𝛽𝛽1𝑥𝑥1+ 𝛽𝛽2𝑥𝑥2}

𝑒𝑒{𝛽𝛽0+ 𝛽𝛽1𝑥𝑥1+ 𝛽𝛽2𝑥𝑥2}+ 1
        

The regressors considered include: the raw ensemble probabilities, the 3-day accumulated precipitation 
(𝐼𝐼3𝑑𝑑), 𝐼𝐼3𝑑𝑑 anomalies (with respect to the climatologies calculated in the previous sections), and large scale 

Fig. 1: Spatial distribution of the temporal correlation (along calendar days) for the NARR and GEFSv11 
climatologies, panel a). In sample (using re-forecast data, panel b) and out of sample (based on real-time 
forecast data, panel c) exceedance probabilities of the forecast climatology. 

Fig. 2: Reliability curve (a), Brier skill score (b) for CONUS wide raw 
uncalibrated probability of exceedance of the 85th percentile of the 
3-day accumulated precipitation for L=8-10 days. Spatial 
distribution of the Brier skill score for the whole year and the warm 
season (c and d). 
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environments (i.e. Convective Available Potential Energy, CAPE, air temperature, T, dewpoint temperature, 
Td, vertical velocity, w). We considered 1-3 parameters regression, with or without log-transformation, totaling 
to about 220 possible combinations to consider.  

Each regression is fit to each grid point including values from a 7x7 kernel centered on the grid of interest 
on 2/3 of the sample length. The validation of the results is performed out of sample on the remaining 1/3 of 
the values.  

Because of the large number of regressions implemented (# grid points times the # of parameter 
combinations), we evaluated the regressions at the CONUS-wide level using 2 metrics: the weighted least 
square slope of the corresponding reliability curve, and the last value of the sign-test (DelSole and Tippett 2016) 
based on the CONUS-wide BSS. In particular, for the reliability curve metric, the weights were proportional to 
the number of data falling in a specific probability category, and slopes closer to 1 indicated better reliability. 
For the BSS sign-test, we ranked the models based on the last value.  

Many reliability curves (small circles, Fig. 3a) are closer to the 1:1 slope (black line) than the uncalibrated 
case (blue circles), but some are also significantly worse.  Within the other metric, instead, all regressions 
(colored lines, Fig. 3b) fall outside the “not-significant” area (delimited by the two black lines, within which 
the regression would appear to be not significantly more skillful than the uncalibrated case) and all in the “More 
skillful” domain. 

5.  Results 

The two metrics rank the different regressions in slightly different ways, as expected, since they measure 
different properties of the forecasts. We pick the best 1 and 3-parameter models in both metrics, which identify 
the raw ensemble probabilities (for both the 1 and 3-parameter regressions), together with the 𝐼𝐼3𝑑𝑑 anomalies 
and the natural log of 𝐼𝐼3𝑑𝑑 as regressors.  

The reliability of the forecast (Fig. 4a) improves considerably for ensemble probability values up to 0.7 in 
both regressions, with 1 or 3 parameters. When we look at the reliability for each month separately, all months 
now have reliable forecasts, with the best performing month being July, followed by June, May, and August. 
Although August is the least reliable of the months, the calibration largely improves the raw reliability values. 
Overall, for this case, the 3-parameter case improves reliability more than the 1-parameter regression. With 
respect to the BSS, the two regressions behaves similarly: both the spatial distribution and the CONUS-wide 
values for the May—August are pretty much identical for the 2 regressions (Fig.4c and d), and they both display 
skill: the CONUS-wide BSS are now all positive (Fig. 4d) and the spatial calibrated forecast now have positive 
BSS values for about 75% of the domain (Fig. 4e, orange and green lines) compared to 25% in the uncalibrated 
case (Fig. 4e, blue line, and Fig. 2d for the map).   

Fig. 3  Reliability curves for the all the regressions considered (small circle) and the uncalibrated results (blue 
large circles) (a), and CONUS wide Brier skill score sign-test for the same regressions compared to the 
uncalibrated ensemble probabilities of exceedance (b). 
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6.  Concluding remarks/discussions 

We presented a calibration method 
for extreme precipitation probabilities 
in subseasonal-to-seasonal forecast 
models. In particular we assessed the 
skill and reliability of the raw 
uncalibrated probabilities of 
exceedance of the 85th 3-day 
accumulated precipitation over the 
CONUS for the GEFSv11 re-forecast 
data from SubX. The uncalibrated 
probabilities have limited reliability and 
skill, especially for the warmer months 
of the year. We use a logistic regression 
model to calibrate these months 
(May—August), and have identified 
two models as the best performing ones. 
Both use the raw uncalibrated ensemble 
probability as regressors, together with 
the precipitation values and their 
anomalies with respect to the 85th 
percentile climatologies. The method, 
although simple, largely improves the 
baseline values, both for the forecast 
reliability and its Brier skill score. 
Moving forward, we will extend this 
work to all the models included in the 
Subseasonal Experiment (SubX) and 
the new GEFSv12 re-forecast dataset.  
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1. Introduction 

 Dynamical seasonal forecasts have high value for many sectors and stakeholders, but are issued on coarse 
temporal scales such as monthly or seasonal. Many users could benefit from finer temporal scales to augment 
the information from monthly and seasonal forecasts already provided. Finer temporal scale information can 
provide users with statistics about the distribution of the forecast variable within the month or season, and/or 
metrics about daily extremes. However, general circulation models (GCMs) can be biased and lack reliability, 
and calibration methods are sometimes used or desired to adjust raw hindcasts and forecasts to correct bias and 
improve reliability. Moreover, while daily model forecasts are sometimes available, the statistics of these data 
may not match the statistic of the seasonal forecast. Thus, it may be desirable to disaggregate seasonal forecasts 
to daily to ensure consistency between time-scales. Here, we disaggregate Bayesian Joint Probability (BJP) 
calibrated (Schepen et al. 2018; Strazzo et al. 2019) seasonal 2-meter temperature forecasts from the North 
American Multi-Model Ensemble (NMME) to daily, and compare these to raw NMME 2-meter temperature 
forecasts disaggregated to daily. The disaggregation approach follows Schepen et al. (2020) who successfully 
disaggregated BJP calibrated forecasts of multiple variables over Australia. The overarching goal of the 
disaggregation is to provide forecasts of the distribution of daily values within a forecast season that preserve 
the statistical properties of the seasonal forecast and properties awarded by calibration, that matches the 
distribution of historial daily sequences. Ultimately, we aim to forecast the probability of extreme days (PoEx) 
within the season. 

2.  Data and methods 

2.1  Data 

We provide results for disaggregated raw and BJP calibrated NMME ensemble hindcasts of 2-meter 
temperature (1982-2010). For more information on raw NMME, see Kirtman et al. (2014). We disaggregate 
the full suite of NMME models rather than using an individual model. BJP calibrated NMME data are those 
used in the Calibration, Bridging, and Merging (CBaM) forecast system which provides support to seasonal 
forecasters at the Climate Prediction Center (CPC). The observation dataset used for calibration/seasonal 
verification is Global Historical Climatology Network - Copernicus Atmosphere Monitoring Service (GHCN-
CAMS) gridded 2-meter temperature (Fan and van den Dool 2008). For disaggregation to daily/daily 
verification we use the CPC daily global temperature dataset (GLBT). 

2.2  Methods 

We calibrate the NMME ensemble mean using a BJP methodology, which uses the bivariate normal 
distribution between observed and GCM temperature and a Markov chain re-sampling technique to obtain a 
large statistical ensemble of 1,000 members (we select 100 members for disaggregation due to compute time). 
BJP calibration has been shown to reduce bias of NMME hindcasts and forecasts and improve reliability. More 
information on the BJP calibration for NMME can be found in Strazzo et al. (2019). To disaggregate, we use a 
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modified method of fragments (MoF) technique. Raw or BJP calibrated seasonal 2-meter temperature forecasts 
for a given season and year are standardized based on the observed mean and standard deviation. We then find 
all the dates where the squared error between observations and forecasts is the smallest (a Euclidean distance 
search). For each of these dates we calculate the weight of that day in the given season, i.e. divide the observed 
daily temperature from the Euclidean date search by the observed seasonal mean; to form a series of weights 
for n number of days in a season. We then multiply the raw or calibrated forecast by these weights to form a 
disaggregated daily dataset. The calibrated data has the additional step of shuffling the ensemble members using 
Schaake Shuffle to re-establish temporal and spatial relationships between ensemble members. We are awarded 
roughly 100 member ensembles of raw and calibrated daily data for the desired season. The disaggregation 
method is detailed in Schepen et al. (2020).  

3.  Results 

3.1 Distribution of daily temperatures in disaggregated hindcasts 

We consider the disaggregation method successful, though not necessarily skillful, if it is able to represent 
the seasonal climatology (when calibrated) and the observed daily distribution of temperatures within the season. 
Fig. 1 depicts the difference in October-December (OND) temperature climatology (1982-2010) for raw 
NMME (a), and BJP calibrated NMME (b), where the difference is calculated with respect to GHCN-CAMS. 
Clearly, BJP calibrated NMME matches the observed GHCN climatology, and there is bias in the raw NMME 
climatology. Also depicted is a comparison of the distribution of daily observed temperatures in OND to 
disaggregated raw NMME (c) and disaggregated BJP calibrated NMME (d) for the 1982-2010 period (daily 
anomalies in degrees C), where the observed daily data is from the CPC global temperature (GLBT) dataset. 
Both raw NMME and BJP calibrated NMME show a daily distribution similar to observed.  However, we note 
that the dataset used for calibration (GHCN_CAMS) is different from that used for daily disaggregation (GLBT) 
(Fig. 1e).  Despite this difference, the distribution is fairly well represented by both disaggregated raw and 
calibrated NMME.    

3.2 Example forecast - OND1997 (Lead 1) 

Our goal is to provide forecasts of the distribution of daily values in order to forecast the probability of 
extreme days within a given season, with the daily statistics matching seasonal information. This is intended to 
accompany seasonal mean probabilistic forecasts by providing additional metrics for extreme predictions. As 
an example, we provide an extension of the lead 1 OND1997 seasonal forecast in raw and BJP calibrated 

Fig. 1 (a) Raw NMME OND 1982-2010 
climatology minus GHCN-CAMS 
(°C). (b) as in (a) but BJP calibrated 
climatology difference. (c) 
Distribution of daily disaggregated 
raw NMME and observed 
temperature anomalies over North 
America (°C). (d) as in (c) but BJP 
calibrated disaggregated. (e) 
GHCN-CAMS minus GLBT (°C). 

a) 

b) 
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NMME, disaggregated to daily. 
OND1997 was chosen as a test case as 
it had strong forcing from the 
anomalous El Niño state, and was thus 
a forecast of opportunity. OND1997 
seasonal mean forecasts of temperature 
are shown for raw and BJP calibrated 
NMME in Fig. 2a and b, with shading 
roughly matching CPC hazards 
thresholds for temperature. Given 
associated disaggregated data, we can 
provide a count of the number of days 
expected to be “extreme” (here defined 
as below 0°F, Fig. 2 c and d), and the 
probability of a given number of 
extreme days within the season (here 
defined as at least 15 days, Fig. 2 e and 
f). While these forecasts are similar for 
raw and BJP calibrated disaggregated 
NMME, raw disaggregation has higher 
false alarms compared to BJP (6.35% 
and 3.58%, respectively); and also a 
mildly lower threat score (hit rate/(hit 
rate + misses + false alarms) of 0.91 
compared to 0.93 for this forecast. For 
the 1982-2010 hindcast period for 
OND, raw disaggregated hindcasts 
have higher false alarm rates and lower 
threat scores, thus, BJP calibrated 
disaggregated hindcasts are slightly 
more skillful for this season.

4.  Discussion and conclusions 

We demonstrate a methodology for 
disaggregating seasonal forecasts to 
daily, for raw and BJP calibrated 
NMME. This disaggregation 
methodology was also demonstrated for 
Australia in Schepen et al. (2020), and 
adapted here to be used for North American 2-meter temperature forecasts and the NMME. Both raw and BJP 
calibrated disaggregated hindcasts were able to recreate the observed temperature distribution over North 
America, and BJP calibrated hindcasts offer the added benefit of matching the observed climatology and 
improved reliability (Strazzo et al. 2019). Disaggregated daily data are intended to accompany seasonal 
forecasts by providing additional metrics on the distribution of extreme days within a season, with statistics 
matching that of the seasonal forecast. An example forecast was shown for OND1997 which shows the 
probability of 15 or more days falling below 0 degrees F, but this metric can be easily changed for any number 
of potential uses. For this particular metric, BJP calibrated disaggregated hindcasts are more skillful than raw 
disaggregated hindcasts due to lower false alarms. Future work will involve addition of precipitation to 
disaggregation, and discussions with forecasters and stakeholders to determine the best visualization of the data. 

Fig. 2 (a) Raw NMME OND1997 2-meter temperature (lead 1) in 
degrees F. (b) as in (a) but BJP calibrated. (c) Raw disaggregated 
NMME ensemble median number of days below 0°F. (d) as in (c) 
but BJP calibrated. (e) Raw probability of 15 or more days within 
OND1997 below 0°F. (f) as in (e) but BJP calibrated. 
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1. Introduction 

It is known that the predictability of the atmospheric and terrestrial variability for the time scale from week 
2 to week 4 is low due to lack of distinct sources of predictability. For this time scale, while the influence of 
initial condition is weakening, the signal associated with the slowly varying boundary conditions such as SST, 
sea ice, soil moisture is not strong enough. 

With a dynamical ensemble forecast system, a large ensemble size is required to extract the small signal. 
In general, a limited set of ensemble members is available at operational centers on a daily basis for S2S 
forecasts. For example, NCEP CFSv2 provides a total of 16 members for 45-day target period. One possible 
approach to increase prediction skill is to use a lagged ensemble which uses forecasts from multiple initial dates 
and thus increases the ensemble size. However, inclusion of forecasts from longer lead times can also result in 
degradation in prediction skill of individual members that would offset the advantage of the increased ensemble 
size. Because of these two opposing factors, it is not clear what would be the influence of different choices of 
lagged ensemble on the prediction skill. In this analysis, we explore the construction of lagged ensemble 
forecasts with increasing ensemble size from longer lead times and its influence on prediction skill for week 2, 
week 3-4, and monthly anomalies of precipitation and temperature over North America. The results of this 
analysis help assessing feasibility of lagged ensembles to the extended-range forecasts. 

2.  Data and methods 

The ensemble forecasts are from the NCEP CFSv2 during operational time period after April 2011 (Saha 
et al. 2014). Every day 16 members of 45-day forecast are included. The analysis focuses on variables of 
precipitation and 2-meter temperature (T2m) for the forecast target months of November-March (NDJFM) 
2011-2020. The verification data are the CPC global unified daily gauge precipitation analysis (Chen et al. 
2008, https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/) and the CPC global daily mean surface 
temperature (https://ftp.cpc.ncep.noaa.gov/precip/PEOPLE/wd52ws/global_temp/). The observational and 
model forecast daily anomalies are computed as the departures of total fields from the first four annual 
harmonics of daily data. The weekly, bi-weekly, and monthly anomalies are averaged from the daily anomalies. 
Forecast anomalies are lead-time dependent, which means that the lead-dependent biases as well as the seasonal 
cycle are removed from model forecasts. 

First, we try to investigate if there is an advantage with the lagged ensemble, and at what lagged time the 
skill would obtain the most improvements, i.e., the optimal lag time of the lagged ensemble. Then, we examine 
if the optimal lag time varies with the available number of forecast members for each initial date, and what is 
the optimal lag time and how much can prediction skill gain from a lagged ensemble based on CFSv2 current 
configuration of 16 members per day.   
3.  Results 

Figure 1 shows the variation of correlation skill as a function of the lagged ensemble time (x-axis) and the 
number of forecast members available per day (y-axis). The correlation skill is averaged over the CONUS and 
for the prediction of week 2, week 3-4, and monthly T2m, respectively (upper panels). The approach of lagged 
ensemble allows larger and larger total size of ensemble with increasing lagged ensemble time as all forecast 
members between the longest lead to shortest lead are used. For a fixed number of forecast members per day, 
we can see  that there is indeed an optimal lag time  at which the correlation skill  reaches its  maximum.   The 
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Fig. 1  The upper panels: the CONUS area averaged anomaly correlation skill as a function of the lagged 
ensemble time (x-axis) and the number of forecast members per day (y-axis) for T2m week-2, weeky3-4, 
and monthly forecasts. The cross sign “x” marks where the optimal lag time for different number of forecast 
members. The low panels: the correlation skill at 1-day-lead (the red box) and the maximum skill at the 
optimal lag time (the black cross sign) as a function of the number of forecast members per day (y-axis). 

Fig. 2  The same as Fig. 1 except for the precipitation. 
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Fig. 3. The same as Fig. 1 except for the prediction skill of root mean square error (RMSE). Therefore, the cross 
sign “x” marks the minimum RMSE at the optimal lag time. 

Fig. 4  The same as Fig. 3 except for the precipitation. 
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correlation skill increases from its value at 1-day lead time to a maximum (marked with a cross sign) as the lag 
ensemble time increases, and more members from longer leads are included in the construction of ensemble 
mean forecast. The correlation skill then gradually decreases as the lagged ensemble time increases even further. 
The existence of optimal lag time is an indication that the lagged ensemble approach does indeed lead to 
improvements in skill because of the positive influence of an increase in the ensemble size, which eventually is 
offset by forecasts with longer lead time being included in the lagged ensemble.  

A point to note is that optimal lag time becomes shorter, and the magnitude of the correlation skill gain 
relative to its 1-day-lead value (the difference between the red box and the black cross sign in the low panels) 
decreases when more members from each initial time are included in the lagged ensemble. This observation 
implies that as larger and larger numbers of forecasts are initiated from the same time, use of lagged ensemble 
in improving forecast skill will not be a useful approach; for forecast systems run in the continuous mode, gain 
in skill using lagged ensemble will only accrue when the size of ensemble run from each initial time is small. 
For example, the T2m week 2 forecasts would not have benefit for the correlation skill from the lagged ensemble 
when 10 or more members are initiated every day.  

All the forecast time scales, week 2, week 3-4, and monthly, analyzed in the study show similar 
characteristics in the variations of correlation skill with lagged ensemble time but with different optimal lag 
time and different magnitudes of maximum gain in the correlation skill relative to its 1-day lead. In general, the 
optimal lag time is the longest for the week 3-4 forecasts, while it is in the middle for the monthly forecasts. It 
implies that the T2m week 3-4 forecast would have benefit from longer lagged ensembles. For example, when 
13 or more members initiated every day the optimal lag time could reach to 4-day for week 3-4 forecast, while 
it is 2-day for monthly forecast.  

Comparing to T2m forecasts, Fig. 2 shows the precipitation correlation skill variations for different 
constructions of lagged ensembles. For week 2 forecast, we could use a little longer lag time to improve the 
correlation skill for precipitation than that for T2m. While for week 3-4 precipitation forecast, the skills decrease 
quickly after the lag time longer than 2 or 3-days. The potential improvement in skill is also very little even 
only small size of forecast members available per day (Fig. 2, the middle column in the low panels).  

Shown in Fig. 3 and 4 (with the same layout with Fig. 1 and 2) are the variations of the root mean square 
error (RMSE) for T2 and precipitation in forecasts of week 2, week 3-4, and monthly as the function of lagged 
ensemble time and the number of members at each initial time. In general, the variations of the RMSE with 
lagged ensemble time show similar characteristics with that of correlation skill, but with different optimal lag 
time and different magnitudes of maximum reduction in the RMSE relative to its 1-day lag ensembles.  Overall, 
the optimal lag time is longer in RMSE than that in the correlation skill for the same ensemble forecasts. For 
example, the RMSE in the T2m week 3-4 forecast shows monotonically decreasing as the lag ensemble time 
increase. It indicates that the ensembles with inclusion of the members from the shortest to the longest lead 
would reduce the RMSE. Similarly, the longer lagged ensembles would improve the RMSE skill for 
precipitation forecasts at all time scales analyzed in the study.  

4.  Summary 

Skill improvement can be realized with lagged ensemble approach for extended-range forecasts. The 
potential for skill gains becomes smaller as the ensemble size that is available at each lead time increases. The 
optimal lag time at which skill reaches its maximum varies with the ensemble size at each lead time, forecast 
variable, forecast time scale, and skill measure. For CFSv2 current configuration with 16 ensemble members 
available per day, a small improvement can be realized with the lagged ensemble approach. In general, 2-days-
lagged ensembles are reasonable for week 2, week 3-4, and monthly forecasts, while it can be extended to 4-
days-lagged ensembles for T2m week 3-4 forecasts. 
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ABSTRACT 

The Conventional Observation Reanalysis (CORe) is a global atmospheric reanalysis designed for 
climate monitoring, and in particular to be a replacement for the venerable NCEP/NCAR Reanalysis which 
is used by the Climate Prediction Center for its climate monitoring.  CORe has more spatial resolution (0.7 
degrees vs 2.5 degrees, 64 vs 28 model levels), and higher temporal resolution (3 hourly vs 6 hourly 
analyses).  CORe is created using a modern data assimilation system (ensemble Kalman filter vs 3-D Var), 
and model (2018 FV3 cubed sphere vs 1995 GFS spectral model) which allows it to produce analyses better 
than the NCEP/NCAR Reanalysis without using satellite data except for Atmospheric Motion Vectors 
(AMVs), and satellite observations used to produce the sea-surface temperatures and snow depths.  
Consequently many of the problems with the Climate Forecast System Reanalysis (CFSR, Suru et al., 2010) 
can be avoided. This extended abstract details the status of the project for Oct 2020, with an update for 
January 2021. 

1. Introduction 

 Many reanalyses try to produce the best analysis by assimilating all useful satellite observations.  This 
approach produces an analysis with the best forecast skill.  However, this approach leads to spurious jumps in 
the time series often caused by changes in the satellite data (ex. Ebisuzaki and Zhang, 2011; Chelliah et al., 
2011; Zhang et al., 2012).  Another class of reanalyses use a more homogeneous observational data set to 
eliminate the spurious temporal jumps.  This class of reanalyses only depend on surface data and span many 
years (20th Century reanalysis, Compo et al., 2011; ERA-20C, Poli et al., 2016).  By using fewer but more 
consistent observations, the resulting analyses avoid the spurious jumps at the cost of being spatially and 
temporally noisier.   For climate monitoring, we want a reanalysis that produces good trends and good spatial 
patterns.  We want a reanalysis that is between the all-satellite reanalysis and surface-observations-only 
reanalysis. 

2.  Project phases 

The first (prototype) phase of the CORe project was to make a 1950-2010 reanalysis using an 80-member 
ensemble Kalman filter data assimilation using the NCEP spectral model with conventional observations, and  
atmospheric motion vectors (AMVs).  This preliminary reanalysis was similar or better in quality than the 
NCEP/NCAR reanalysis even though that reanalysis used satellite data (Zhang et al., 2017, Ebisuzaki et al., 
2017). 

The second phase of CORe is to make a 1950-present reanalysis using the FV3 model which is the basis 
for NOAA’s Unified Forecast System.  When complete, CORe will cover 1950-present with a 0.7 degree grid 
(512x256 Gaussian) and a 3 hour temporal resolution (Ebisuzaki et al., 2019).  Following are the specifics. 

Model:  Cubed sphere FV3-GFS model, 64 vertical levels, C128 grid. 
Data assimilation: Ensemble Kalman Filter (from PSD), 80 ensemble members 
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80 analyses are produced which are 
equally likely (no control run). 

6 hour Incremental Analysis Update 
(IAU), force the model for 6 hours, and 
then make short free forecast, 

The 03/09/15/21Z analyses are 
immediately after the IAU forcing has 
finished 

The 00/06/12/18Z analyses are 3 
hours after the IAU forcing has finished 

3.  Status of satellite period analyses 
(10/2020) 

3.1 Multiple streams from 1982-2019  
(80% done) 

The first stream started in 1982 
because we lost 1979-1983 analyses and 
data from the other streams due to a file 
system crash on the high performance 
computer that we were using.  We 
managed to recover enough to create 
restart files in 1982 and the ends of the 
other streams.  We used this reboot to 
change the SST from Reynolds Optimum 
Interpolation (OI) SST to the Operational 
Sea Surface Temperature and Sea Ice 
Analysis (OSTIA) because Reynolds 
SST ceased operational production. 

3.2  Early evaluation using ERA5 as truth 

Fv3GFS and GFS-spectral are 
different models, so the results are not the 
same between the CORe and the 
prototype CORe.  However, there are 
many common features. Monthly means 
relative to ERA-5 are similar to prototype 
CORe but show tropospheric heights are 
worse, and tropospheric T, U are better.  
The too large precipitation in the 
prototype CORe has been much 
improved.  The global precipitation is 
now similar to other reanalyses which 
tend to be larger than observed.  CORe’s 
global precipitation shows smaller trends 
than the modern reanalyses which use 
satellite data (Fig. 1).   
4.  Status of pre-satellite analyses 

Prior to the mid-1970s, there are no AMVs.  The AMVs are not a crucial observation type in modern data 
assimilation systems during the current period because AMVs have large observation errors. The large errors 
are caused by difficulties in assigning the height to the vectors. 

Fig. 1  Global precipitation with 12-month running mean from various 
reanalysis (mm/day).  CORe (red), ERA-5 (purple), CFSR (rose), 
JRA-55 (green) and MERRA-2 (gold).  Except for CORe, the other 
reanalyses ingest thermal radiance data from satellites. 

Fig. 2  Fraction land snow cover, observed (red), model forecast 
(green). 
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The SST analyses prior to 1981 are of 
worse quality than current analyses 
because the lack of satellite data.  This 
will affect the temperature analyses near 
the ocean.  However, one expects that 
atmospheric observations will reduce the 
impact of the SST errors away from the 
ocean surface. 

The global snow-depth analyses 
requires satellite data, and the snow 
analyses is unavailable prior to 1979.  
One can use the snow from the model 
forecast.  We will validate the snow cover 
because the snow-depth analyses loses 
accuracy for deep snow, and the snow 
cover has the larger effect on the 
atmosphere through the albedo than the 
depth of the snow through its heat content 
and insulation effects.  Figure 2 shows the 
observed fractional snow cover over land 
(red) and the model forecast (green).  
Generally the model derived snow cover 
is 2.5% larger than the observed snow cover over land.  While 2.5% is small for a global value, it understates 
the regional value in certain seasons.  In addition, variations in the snow cover can have a strong effect on the 
societally important 2-meter temperature in some populated areas.  Therefore, it is desirable to improve the 
snow cover.   

The adjusted model snow consists of taking the model forecast snow, setting the snow to zero if the model 
snow is less than 3 mm of liquid water equivalent (roughly 3 cm snow), and using this as a snow analysis.  This 
adjustment is done every 48 hours to reduce the chance of adjusting the snow during the middle of a snow storm.  
This adjustment is to account for the albedo effects from a non-uniform snow depth in the grid box.   
(Presumably for a 3 cm snow, the grid cell is only half snow covered, and needs to be treated as snow free rather 
than snow covered.)  Figure 3, based on work conducted through mid-January 2021, shows the anomalous snow 
cover (relative to observations) for the model snow (green), and anomalous adjusted model snow cover (red).  
As seen in Figure 3, the snow cover is much better estimated by this simple adjustment (closer to the zero line).  
For Figure 3, we used the snow cover for each ensemble member and averaged the snow cover fraction.  
Calculating the snow cover from the ensemble-mean snow depth would overestimate the snow cover.  In mid-
January 2021, we started running CORe for the pre-satellite period using this adjustment. 
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1. Introduction 

 The Week 3-4 forecast period lies squarely within the subseasonal timescale, where skillful outlooks of 
precipitation and temperature derive from accurate predictions of both weather-related variability and climate-
induced signals. Forecasting for this period has been historically challenging but is needed to provide water, 
energy, and agricultural interests with the essential information to make important decisions for society. To 
provide this information, the Climate Prediction Center (CPC) has been issuing above or below normal Week 
3-4 precipitation and temperature outlooks since September 2016. The temperature outlooks are considered 
operational whereas the precipitation outlooks remain experimental due to smaller forecast skill.  

There are a number of forecast tools available to CPC’s Week 3-4 forecaster that derive from both statistical 
techniques and dynamical guidance from subseasonal prediction systems. In fact, the latest suite of subseasonal 
prediction systems provide in excess of ~200 ensemble members for use in making real-time Week 3-4 
outlooks. Such a large number of ensemble members provide a unique opportunity to explore different types of 
dynamical model postprocessing, such as ensemble subsampling. Here, an applied research project was 
conducted to assess whether real-time subsampling of the numerous ensemble members can provide improved 
Week 3-4 precipitation and temperature outlooks over using all available members. 

2.  Methods 

Many hypotheses were posed and tested regarding the best method to subsample from the ~200 ensemble 
members provided by the subseasonal prediction systems, such as the ECMWF, JMA, and those participating 
in the Subseasonal Experiment (SubX; Vitart et al. 2017; Pegion et al. 2019). A summary of these methods is 
provided in Table 1. Most of these methods were tested using ensemble members available from the reforecasts 
from the common period of 1999-2015. Because the reforecasts of the models have fewer ensemble members 
than their real-time counterparts, this resulted in a reduction in sample size from ~200 to ~85 members. Most 
of the methods yielded inconclusive results, meaning the skill scores derived from a subsample of members 
were no better and at times lower than the skill scores derived from simply using all members. However, the 
method labeled “Autoblend” yielded a notable improvement in skill scores for 500-hPa height anomalies (Z500), 
precipitation, and temperature. A brief description of this method follows. 

The “Autoblend” method makes use of the Week-2 Z500 Autoblend that is produced daily by CPC. The 
underlying premise of this method is that it is possible subsample members based on their forecast of Week 2 
Z500 to improve the skill of Week 3-4 Z500, temperature, and precipitation. The Week 2 Z500 Autoblend is a 
weighted average (%) of the operational Week-2 ensemble means of Z500 from the following weather models: 
ECMWF (50%), Canadian (25%), and GEFS (25%). The pattern correlation between the Week 2 Z500 
Autoblend and the Week-2 Z500 forecast of each ensemble member from the subseasonal models is calculated 
over an extended-PNA region (20°N to 87.5°N and 180°E to 330°E). Then, the ensemble members are ranked 
by their pattern correlation and removed from the entire ensemble suite in order, one at a time, from lowest to 
highest correlation in order to determine an optimal number of “bad” members to remove. By convention, the 
members that are removed (lowest correlations) are considered “bad” members and constitute the “bad” 
subsample. The members that remain are considered the “good” subsample. 
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Skill scores for the ensemble mean Week 3-4 forecasts of anomalous Z500 are derived from all members, 
the “good” subsample, and the “bad” subsample and are computed in terms of pattern correlations with 
reanalysis values derived from NCEP/NCAR Reanalysis V1 (Kalnay et al. 1996) over the extended-PNA region. 
With respect to precipitation and temperature, skill scores are computed over the domain of CONUS and AK 
and are presented as Heidke Skill Scores (HSSs) for the two-category forecast of above or below normal. This 

Table 1. Brief description of the various subsampling methods tested. The best performing method was the 
“Autoblend” while the remaining methods performed not as well. Methods marked with * are idealized 
experiments that were conducted as a proof of concept that subsampling has the potential to improve skill 
scores. As such, they cannot be implemented in real-time operations. 

Table 2. Skill scores, computed as pattern correlations, for the all member forecast and the forecasts from the 
“good” and “bad” subsamples where n = 40 “bad” members have been removed. Further details can be 
found in the caption to Fig. 1. 

Table 3  As in Table 2, but for the HSSs of precipitation. Further details can be found in the caption to Fig. 2. 
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Table 4  As in Table 3, but for temperature. Further details can be found in the caption to Fig. 3. 

is based on counting the number of individual ensemble members that fall within a given category, rather than 
their mean. CPC’s Global Unified Gauge-Based Analysis of Daily Precipitation (Chen et al. 2008) is used to 
verify precipitation, while CPC’s Global Temperature dataset is used to verify temperature (Fan et al. 2008).   
3.  Results 

Because the Week 2 Z500 Autoblend only extends back to ~2011, the “Autoblend” method was first tested 
during the common reforecast period of 2011-2015. The removal of “bad” ensemble members from the entire 
ensemble suite left a “good” subsample with higher skill scores for Z500, precipitation, and temperature than 
using all members (not shown). Given these positive results from the reforecast period, testing was transitioned 
to the quasi real-time period of August 2017 to July 2020, focusing uniquely on weekly forecasts issued on 
Friday to mimic CPC’s Week 3-4 forecast cadence (n = 157 forecasts). Figures for these results follow.  

Figures 1, 2, and 3 depict the skill scores for Z500, precipitation, and temperature, respectively, using the 
“Autoblend” method for the quasi real-time period. The skill scores are calculated for each variable across its 
respective physical domain for each individual forecast, then averaged across all forecasts. The thick lines 
represent the skill scores of the “good” subsample, where n = 0 is the skill score of the ensemble forecast of all 
members and subsequent n are the skill scores of the ensemble forecast with n “bad” members removed. The 
thick line represents the skill score of 
the “bad” subsample, where n = 0 is the 
skill score for the “worst” member and 
subsequent n are the skill scores for the 
ensemble forecast of the n “bad” 
members. The thin line represents the 
skill score of individual “bad” members 
that are removed, rather than the 
ensemble forecast.  

Removal of the “bad” members 
leads to a gradual improvement in skill 
scores in the remaining “good” 
subsample. For example, with the 
removal of ~33% of the members (n = 
40), the “good” subsamples show skill 
score improvements of 10.2% for Z500, 
5.2% for precipitation, and 8.3% for 
temperature compared to their all 
member forecasts. Moreover, the skill 
scores of the “good” subsamples are 
consistently greater than the skill scores 
of the “bad” subsamples until large n 
are reached (compare thick to medium 
lines). In addition, “bad” members are 
generally identified early in the 
subsampling process, as indicated by 
the gradual increase in skill scores of 
the “bad” members for increasing n 

Fig. 1  Skill scores, computed as pattern correlations, of anomalous 500-
hPa heights over an extended-PNA domain between the ensemble-
mean Week 3-4 forecast and observations. The pattern correlations 
have been averaged over 157 forecasts, issued on Fridays from 
August 4, 2017 to July 31, 2020. The thick line represents the skill 
scores of the “good” subsample, where n = 0 is the skill score of the 
ensemble mean of all members and subsequent n are the skill scores 
of the ensemble mean with n “bad” members removed. The medium 
line represents the skill score of the “bad” subsample, where n = 0 
is the skill score for the “worst” member and subsequent n are the 
skill scores for the ensemble mean of the n “bad” members. The thin 
line represents the skill score of the individual “bad” members that 
are removed, rather than their ensemble mean. 
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(thin lines). Also, the skill scores of the 
“good” subsamples begin to decrease 
for large n, as there become so few 
members that their ensemble forecasts 
are unlikely to score higher than that of 
a forecast with a larger number of 
ensemble members.  

Finally, upon examination of the 
skill scores for the 3 years individually, 
improvement is seen in all three 
variables, with the exception of 
precipitation during 2018-2019 (Tables 
2, 3, and 4).     

4.  Conclusion 

Given the demonstrated success of 
the “Autoblend” method in producing a 
subsample of ensemble members with 
modestly improved skill scores over 
using all members, an experimental 
real-time tool has been developed. The 
tool provides the following figures for 
each Friday issuance of the Week 3-4 
outlook: 1) Week 2 Z500 Autoblend 
anomalies, 2) Week 3-4 forecasts of 
Z500, precipitation, and temperature 
derived from all members and the 
subsample of “good” members, and 3) 
a real-time assessment of forecast skill 
scores derived from all members and 
the subsample of “good” members. 

There are a couple of challenges to 
overcome to successfully implement 
this method into CPC’s real-time 
environment. First, it will be difficult to 
know in real-time the optimal number 
of “bad” members that should be 
removed during the subsampling process. For example, while removal of ~33% of the members seemed optimal 
for all three variables in the quasi real-time period, this number may change as new model versions with 
different ensemble configurations are released. Thus, skill scores will be monitored for various percentages of 
members removed such as 33%, 50%, etc. to see if better skill scores may be obtained by simply using a 
different percentage. Second, while CPC calibrates Week 3-4 ensemble forecasts from individual modeling 
centers, a calibration technique has yet to be developed for multi-model ensemble forecasts. A multi-model 
ensemble calibration applied to the “good” subsample may provide an even greater improvement in skill scores. 
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Fig. 2  As in Fig. 1, except for precipitation. Further, the skill scores are 
now computed as Heidke Skill Scores (HSSs) over CONUS and 
Alaska based on categorical Week 3-4 forecast of above or below 
normal precipitation derived from ensemble counts. 

Fig. 3  As in Fig. 2, except for temperature. 
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1. Introduction 

 Multi-year drought is a recurring feature of California’s climate.  California’s extensive system of water 
supply infrastructure— reservoirs, managed groundwater basins, and inter-regional conveyance facilities—
mitigates the effect of short-term (single year) dry periods for most users of managed water supplies, although 
single-year impacts (increased wildfire risk, stress on vegetation and wildlife) remain for other sectors.  Drought 
impacts increase with drought duration and multi-year droughts require water suppliers to ramp up response 
actions as dry conditions persist.  The need for skillful seasonal precipitation forecasting to support drought 
response was expressed as early as California’s 1976-77 drought (CDWR 1978). In an assessment of the 
National Weather Services’ (NWS’) performance during the 2012-16 drought, the more than 100 water 
suppliers interviewed identified skillful seasonal forecasts of cool season precipitation as a top priority (NWS 
2015). 

On average 75 percent of California’s statewide precipitation occurs in November through March and half occurs 
in December through February.  Water agencies and water users thus have a relatively compressed period in which 
to make decisions about managing annual water supplies.  Precipitation forecasting at seasonal time scales – such as 
from the beginning of the wet season to is ending – is important because it potentially offers the longest lead times 
to support drought preparedness and response.  Review of California response actions during the 2012-16 drought 
pointed out the importance of longer lead times in addressing a variety of impacts and also the importance of 
improving seasonal precipitation forecasting to achieve those lead times (California Natural Resources Agency 
(CNRA) 2021).  Historically, lead-time for predicting water supply availability has come from the ability to make 
streamflow forecasts based on estimated snowpack runoff.  These forecasts based on water on the ground are skillful 
in comparison to seasonal precipitation forecasts but are merely predicting an outcome from precipitation that has 
already occurred and do not provide any added lead time.  

2.  Historical prediction skill 

California’s historical multi-year droughts of most significance from a water supply standpoint were those 
of Water Years 1929-35, 1976-77, 1987-92, 2007-09 and 2012-16 (CDWR, 2020).  The 2012-16 drought stands 
out for impacts that appear to be linked to climate warming, including record low snowpack, substantially 
increased wildfire activity, and similarly increased reporting of harmful algal blooms (CNRA, 2021).  The NWS’ 
Climate Prediction Center (CPC) began issuing the present version of its operational seasonal outlooks for 

Fig. 1  Example of CPC outlook and verification at beginning of the drought 
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precipitation in the mid-1990s, providing the opportunity to compare the outlooks with observed conditions for 
the drought years of 2007-09 and 2012-16.  

Evaluation of CPC’s gridded three-month seasonal verifications of its tercile outlooks for these eight water 
years for the key precipitation months of December, January, and February (Fig. 1) shows that in two years the 
outlooks roughly verified.  In four years there was a one-category error in half or more of the state and in two 
years there was a two-category error in half or more of the state.  (There was a similar error in predicting the 
wet Water Year 2017 that ended the five years of drought.)  Reviewing other three-month periods during the 
wet season in these drought years shows other unserviceable outcomes.  These results are disappointing from a 
water management perspective not only because they demonstrate no practical skill, but also because they 
demonstrate no skill in those years when skillful forecasts would be most valuable.  The outlook for the winter 
of 2015-16 – when strong El Niño conditions led to prediction of above-average precipitation in Southern 
California and the opposite occurred – was a further reminder of the status of predictive skill (e.g. Wanders et 
al. 2017).  California’s observed historical record shows that El Niño-Southern Oscillation conditions correlate 
poorly with annual precipitation, except for a tendency for La Niña years to often, but not always, be dry in 
Southern California (CDWR 2020).  

Fig. 2  Experimental NOAA ESRL forecast for CDWR 
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Fig. 3  Experimental University of Arizona Forecast for CDWR  
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3.  Path forward 

Motivated by California’s 2007-09 drought, CDWR began exploring opportunities for improving seasonal 
precipitation forecasting to support drought preparedness and response.  CDWR worked through the Western 
States Water Council to support inclusion of sub-seasonal to seasonal forecasting in the Weather Research and 
Forecasting Innovation Act of 2017.  As state funding has been available CDWR has been funding applied 
research to develop experimental forecast products covering California and the Colorado River Basin.  CDWR 
hopes that this exploration of multiple possibilities could inform the pilot project for improving western U.S. 
S2S forecasting for water management recommended in the National Oceanic and Atmospheric 
Administration’s (NOAA’s) 2020 report to Congress on S2S forecasting (NOAA 2020).   

CDWR has contracted with the National Aeronautics and Space Administration (NASA), NOAA, and the 
University of California system for experimental forecasts.  Figure 2 shows a seasonal forecast made for CDWR 
by NOAA’s Earth Systems Research Laboratory (ESRL) using canonical correlation analysis.  Figure 3 is a 
seasonal forecast made by the University of Arizona under CDWR’s NASA contract, one that includes a 
snowpack component.  One facet of CDWR’s approach was to explore if forecasting snowpack could provide 
added skill over forecasting precipitation alone, considering the better ability to forecast temperature. 
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1. Introduction 

 The National Water Model (NWM) is an operational hydrologic modelling framework built on WRF-
Hydro. It simulates and forecasts not only how water moves throughout US rivers and streams but also changes 
in other land surface states (e.g., soil moisture). The NWM produces hydrologic guidance at a very fine spatial 
and temporal scale. In particular, it provides hourly real-time analysis and forecasts for 2.7 million river reaches 
across the continental U.S. (CONUS), complementing the official National Weather Service (NWS) river 
forecasts at approximately 3600 locations. The NWM was founded in 2016 (v1.0) and has since been upgrading 
to newer versions by including upgrades in model physics and forcings as well as domain expansion.   

In order to explore the application of the NWM for U.S. drought monitoring, the NOAA Physical Sciences 
Laboratory (PSL), Office of Water Prediction (OWP) and Climate Prediction Center (CPC) had a 3-year (2017-
2020) collaborative project. The goal of the project is to evaluate the performance of the NWM v1.2 and v2.0 
for drought monitoring using independent reference observations, with a focus on soil moisture and streamflow. 
The evaluation using in-situ observations (Hughes et al. 2021) has shown that while the NWM soil moisture is 
positively biased at most CONUS locations, the NWM is of comparable performance to the Phase 2 of the 
North American Land Data Assimilation System (NLDAS-2) in terms of interannual variability and drought-
related anomalies. The NWM streamflow is wet biased across much of the CONUS as well. The low-flow 
streamflow (≤ 10th percentile) is of acceptable performance in the Pacific Northwest and southeastern U.S., 
while the model needs to be further improved for the rest of the CONUS regions.  

This work represents CPC contribution to the above 3-year project during the 3rd project year (2020). It 
consists of two efforts: an evaluation of the NWM v2.0 soil moisture using the U.S. drought monitor (USDM) 
as an observational reference, and an investigation of an outstanding issue of the NWM v2.0 for real-time 
drought monitoring that arises from its use of inconsistent precipitation forcings for the real-time analysis and 
retrospective simulation. 

2.  Data and methodology 

The evaluation of the NWM v2.0 (1993-2018) using the USDM focused on their common period (2000-
2018). For a quantitative comparison with the USDM, the NWM soil moisture percentiles (SMPs) were first 
computed relative to the 1993-2018 base period and then converted to the D0-D4 drought categories. The 
evaluation metrics are those based on a contingency table (hit, miss, false alarm, correct negative), and include 
probability of detection, false alarm ratio, success ratio, bias and critical success index. 

In order to investigate the outstanding issue of the NWM v2.0, its precipitation from the real-time analysis 
was compared with the NLDAS-2 precipitation for their common period (June 20, 2019-June 19, 2020). The 
comparison focused on identifying the dependence of the precipitation differences on aspects including regions, 
seasons as well as specific weather and climate events that occurred during the common period.  

3.  Results 

The NWM v2.0 retrospective simulation was evaluated using the USDM for their common period (2000-
2018). In contrast with the USDM which displays considerably more frequent drought occurrence (>0.5) in the 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

70 

western U.S. and southeastern U.S. than 
elsewhere (Fig. 1a), the NWM shows 
spatially more homogenous 
distribution, with moderately more 
droughts occurring in the Great Plains, 
southeastern U.S. and California than 
the rest of the CONUS regions (Fig. 
1b). Using the USDM as a reference, 
the NWM has rather low detection rate 
(<0.5) in the western U.S. and 
southeastern U.S., with higher detection 
(>0.7) in the Midwest (Fig. 1c). The 
False Alarm Ratio (FAR) is overall 
fairly low (<0.2), with exceptions in the 
northeastern U.S. and coastal Pacific 
Northwest where the FAR exceeds 0.5 
(Fig. 1d).   

The distinct differences between 
the NWM and USDM, particularly the 
rather low drought detection rate in the 
western U.S. and southeastern U.S., 
were next investigated. It was found 
that much of these differences are not 
attributed to NWM deficiencies. 
Instead, they occur because the 
evaluation does not represent a fair 
comparison, for two reasons. First, the 
USDM and NWM use different base 
periods to quantify drought anomalies. 
The USDM uses century-long data, 
which enables it to capture both short-
term and long-term droughts. In 
comparison, the NWM retrospective 
simulation is only for 26 years (1993-
2018), which allows it to detect short-
term droughts but not long-term ones. 
Second, the USDM is obtained by 
subjectively integrating a number of 
drought indices, whereas the NWM 
results shown here only use a single 
variable - soil moisture - to indicate 
drought conditions. To demonstrate 
this, a century-long land analysis (VIC 
simulation, 1915-2011, Livneh et al. 
2013) was analyzed to help interpret the differences between the NWM and USDM, while keeping in mind that 
it utilizes a different land surface model (LSM) from the NWM. To assess the dependence of drought anomalies 
on the length of base periods, SMPs were computed using two base periods: a century-long 1915-2011 and a 
short 1993-2011. When the short base period (1993-2011) is used, the VIC simulation (Fig. 2d) is broadly 
consistent with the NWM (Fig. 2b) in that their spatial distribution is in general homogeneous. In contrast, when 
the century-long base period (1915-2011) is used, the VIC simulation captures considerably more droughts in 
the western U.S. and southeastern U.S. (cf. Fig. 2c and Fig. 2d), yielding a better agreement with the USDM 
(Fig. 2a). The VIC simulation, however, still considerably differs from the USDM (cf. Fig. 2a and Fig. 2c), due 

Fig. 1  Frequency of drought occurrence (2000-2018) for D0 and above 
in (a) the USDM and (b) the National Water Model (NWM). The 
evaluation of the NWM using the USDM as the reference for (c) 
probability of detection and (d) false alarm ratio. 

Fig. 2  Frequency of drought occurrence (2000-2011) for D0 and above 
in (a) the USDM and (b) the NWM, (c) the LIVNEH VIC 
simulation with drought anomalies obtained using 1915-2011 as 
the base period, (d) the LIVNEH VIC simulation with drought 
anomalies obtained using 1993-2011 as the base period. 
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in part to the differences in the drought 
indicators they use and in part to the 
VIC performance in these geographical 
regions.   

The cause for the differences 
between the NWM and USDM was 
further investigated by decomposing 
the USDM maps into short-term 
drought (≤ 6 months) and long-term 
drought (> 6 months) components and 
comparing their statistics (Fig. 3) with 
Fig. 1a. The comparison clearly shows 
that the frequent drought occurrence in 
the western U.S. and southeastern U.S. 
are contributed by long-term drought. 
This suggests that a key reason for the 
NWM underestimation of the USDM in 
the western U.S. and southeastern U.S. 
is the lack of long-term droughts in the 
NWM due to its relatively short length 
(1993-2018). This was further 
substantiated by merging the NWM 
with the long-term drought component 
from the USDM via their joint 
probability (Hao and AghaKouchak 
2014) and examining the extent to 
which the merged product resembles 
the USDM. The preliminary merged 
product is shown to agree with the 
USDM very well, with substantially 
elevated drought detection rate and 
reduced FAR (not shown), supporting 
the above suggestion. 

This study also investigated the precipitation inconsistency issue in the NWM v2.0. The NWM v2.0 uses 
HRRR/RAP/MRMS/MPE for the real-time analysis and NLDAS-2 for the respective simulation. The utilization 
of inconsistent precipitation forcings between the retrospective and real-time periods can adversely impact the 
NWM quantification of real-time drought anomalies and hence drought monitoring. Figure 4 shows the 
comparison between the NWM real-time analysis and NLDAS-2 in their precipitation averaged over a one-year 
common period (June 20, 2019 - June 19, 2020). The NWM is noticeably wetter than NLDAS-2 across much 
of the CONUS (7.1% wetter for annual CONUS mean). A detailed examination of their differences shows that 
the differences vary with region, season, precipitation rate and weather and climate events (not shown). It was 
further pointed out that while the present analysis can inform the precipitation differences, with forcing data 
alone, it is difficult to infer and quantify the impact of the forcing inconsistency on real-time drought anomalies 
in land surface states. Additional NWM simulations, such as a real-time NWM simulation forced with 
retrospective-type forcings, would be necessary for such impact assessment.    

4.  Summary and conclusions 

This study evaluated the NWM v2.0 using the USDM for their common period (2000-2018), and identified 
a potential caveat of using the USDM for such evaluation. The evaluation shows that the NWM strongly 
underestimates the USDM drought occurrence in the western U.S. and southeastern U.S., where the probability 
of detection is less than 0.5. Much of the NWM underestimation, however, is not attributed to NWM 

Fig. 3  Same as Fig. 1a but for (a) short-term drought (<=6 months) 
and (b) long-term drought (>6 months). 

Fig. 4  The comparison between the NWM and NLDAS-2 for their 
precipitation averaged over June 20, 2019-June 19, 2020: (a) 
NLDAS-2 (mm/day), (b) the NWM (mm/day), and their 
precipitation differences expressed in (c) ratio (%) and (d) absolute 
difference (mm/day). 
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deficiencies. Instead, it occurs because such evaluation does not represent a fair comparison. Specifically, the 
NWM and USDM utilize different base periods and drought indicators to quantify drought anomalies. The 
USDM uses a century-long base period, which allows it to capture both short-term and long-term droughts. By 
comparison, the 26-year retrospective simulation of the NWM v2.0 enables it to detect short-term droughts but 
not long-term ones. This leads to the strong NWM underestimation of drought occurrences in the western U.S. 
and southeastern U.S. where long-term droughts are abundant. Moreover, the USDM integrates multiple 
drought indicators, whereas this study utilizes a single variable – soil moisture - to quantify drought conditions 
in the NWM, further adding to the inconsistency. This study stresses the importance of considering the above 
potential caveats when using the USDM to evaluate LSMs, and that one needs to use caution when interpreting 
the evaluation results. In addition, an outstanding issue of the NWM v2.0 for drought monitoring was 
investigated by comparing precipitation characteristic between the NWM real-time analysis and NLDAS-2. 
The comparison shows that the precipitation differences vary with region, season and weather and climate 
events, with the NWM real-time analysis being about 7.1% wetter than NLDAS-2 for the annual CONUS mean.     

Moving forward, future NWM versions are expected to have continued improvements in drought 
monitoring capability. The newer versions will have longer retrospective simulations (e.g., v2.1 starts from 
1979), allowing the NWM to better detect long-term drought. Further, with upgrades in model physics and 
forcings as well as domain expansion, future NWM versions are anticipated to have much improved 
performance in detecting and quantifying drought anomalies. 
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ABSTRACT 

Atmospheric rivers (ARs) are responsible for up to 90% of major flood events along the U.S. West Coast. 
The timescale of subseasonal forecasting (two weeks to one month) is a critical lead time for proactive 
mitigation of flood disasters. The NOAA/Climate Testbed Subseasonal Experiment (SubX) is a research-to-
operations project with almost immediate availability of forecasts. It has produced a reforecast database that 
facilitates evaluation of flood forecasts at these subseasonal lead times. Here, we examine the SubX driven 
forecast skill of AR-related flooding out to 4-week lead using the Distributed Hydrology Soil Vegetation Model 
(DHSVM), with particular attention to the role of antecedent soil moisture (ASM), which modulates the 

Fig. 1 a) SubX-based Brier skill score (BSS; denoted as “BSSSubX” and shown as square symbols) over weeks 
1-4 lead time for Peaks Over Threshold of POTN1 (denoted as “BSSPOTN1”) and POTN3 (denoted as 
“BSSPOTN3”) extreme discharge events (with threshold set to 1 and 3 events per year on average). The 
boxplot shows a 90% confidence interval of their differences (denoted as “△BSSPOTN3-POTN1”) derived by 
bootstrapping. The case when there is no overlapping with zero indicates that the difference is significant. 
b) Difference between the BSSSubX and the ESP-based BSS (denoted as “△BSSSubX-ESP”), and difference 
between the BSSSubX and the NCEP_ESP (i.e. the NCEP is used for weeks 1-2 and ESP for weeks 3-4) -
based BSS (denoted as “△BSSSubX-NCEP_ESP”) for POTN1 events. c) Same as b) but for POTN3 events. 
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relationship between meteorological and hydrological forecast skill. We study three watersheds along a transect 
of the U.S. West Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, 
and the Santa Margarita River basin in Southern California. We find that the SubX driven flood forecast skill 
drops quickly after week 1, during which there is relatively high deterministic forecast skill. We find some 
probabilistic forecast skill relative to climatology as well as ensemble streamflow prediction (ESP) in week 2, 
but minimal skill in weeks 3-4, especially for annual maximum floods, notwithstanding some probabilistic skill 
for smaller floods in week 3 (see Fig. 1). Using ESP and reverse-ESP experiments to consider the relative 
influence of ASM and SubX reforecast skill, we find that ASM dominates probabilistic forecast skill only for 
small flood events at week 1, while SubX reforecast skill dominates for large flood events at all lead times.   

This work has been published in Journal of Hydrometeorology in 2021.  
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1.  The problem 

 Strong offshore, low-level wind events in California are often referred to as the Santa Ana or Diablo winds 
and are very warm and dry. Both Santa Ana and Diablo winds events are characterized by warm, dry, strong 
offshore flows. These wind events frequently occur at the end of the dry season (October-December) and can 
be devastating, as they can initiate and sustain multiple, simultaneous wildfires in California. Some studies 
indicate that the Diablo winds associated with the similar flow in southern California are one and the same (e.g., 
Miller and Schlegel 2006; Pagni 1993), while other studies argue the two are related, but separate phenomena 
(Mass and Ovens 2019).  

Santa Ana winds are most frequently studied on local and synoptic scales (e.g., Hughes and Hall 2010; 
Raphael 2003; Sommers 1978; Smith et al. 2018; Rolinski et al. 2016; Rolinski et al. 2019). Some studies have 
shown skill at synoptic scale prediction of Santa Ana winds (e.g., Burroughs 1984; Guzman Morales 2018; 
Jones et al. 2010). Other studies have characterized offshore wind events (e.g. Santa Ana and Diablo winds) 
from a global perspective (e.g., Westerling et al. 2004; Cardil et al. 2021; Guzman Morales 2018; Murphree et 
al. 2019; Rolinski et al. 2019). Some of these studies have investigated the potential to predict offshore wind 
events at subseasonal to seasonal (S2S) lead times (e.g., Rolinski et al. 2019; Murphree et al. 2019).  

We expanded on Murphree et al. (2019) by identifying the tropical ocean and atmospheric precursors to 
offshore wind events, and developing and testing systems for predicting offshore wind events at S2S lead times. 
Our primary research questions were: 

a)  What global scale conditions create anomalously offshore, wildfire favorable winds in California? 
b)  How well can we predict wildfire favorable conditions in California at subseasonal to seasonal lead 

times using remote predictors?   

2.  Data and methods 

2.1  Data 

Our study region was global, with a focus on western North America and the tropical Indian-Pacific ocean 
region. Our study period was August-December 1970-2020 with a focus on November because it occurs in 
middle of the season that is most closely associated with strong offshore winds and devastating wildfires in 
California (e.g., the Camp and Woolsey fires in November 2018).  

Our primary data included:  

1.  Monthly and daily mean atmospheric and oceanic variable data from the NCEP/NCAR Reanalysis 1 
(R1) dataset (Kalnay et al. 1996) 

2.   Bimonthly El Niño/La Niña data from the NOAA Multivariate ENSO Index (MEI v2; NOAA Physical 
Sciences Laboratory 2021) 

3.  Monthly values of El Niño Modoki Index from the Japan Agency for Marine-Earth Science and 
Technology (JAMSTEC).   
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2.2  Methods 

We analyzed monthly zonal 850 
hPa winds (u850) for November 1970-
2020 area averaged for three 
subregions of California and all of 
California: (1) northern California 
(NC, 42.5-37.5°N, 235-240°E); (2) 
central California (CC, 35-37.5°N, 
235-242.5°E); (3) southern California 
(SC, 32.5-35°N, 240-245°E); and (4) 
California (CA, 32.5-42.5°N, 235-
245°E) (Fig. 1). Some of these regions 
include large land and ocean regions 
neighboring California in which u850 
tends to be similar to u850 over 
California. We analyzed u850 
because: (a) we were interested in low-
level winds that have the biggest 
impact on wildfires; (b) offshore 
winds in California tend to have a 
strong zonal component; and (c) u850 
can be a good indicator of wildfire 
favorable winds (e.g., Guzman 
Morales 2018).  

We sorted the u850 values for 
November 1970-2020 into below normal (BN), near normal (NN), and above normal (AN) terciles. We 
identified as wildfire favorable periods those Novembers with the lowest u850 values (i.e., when u850 was most 
offshore or least onshore). We focused our analyses on the 16 most offshore Novembers. We constructed 
conditional composites for these Novembers and the prior August-October periods for a range of global scale 
oceanic and atmospheric variables. We also correlated the u850 for the CA region (CA u850) with global sea 
surface temperature (SST) and other variables. We used the correlation results to identify potential predictors 
of CA u850. We developed a linear regression model based on those predictors and tested the model by 
conducting hindcasts of CA u850 for November 1970-2020. 

This summary of our research focuses on our results for offshore wind events in November in California. 
These results are representative of our findings for the processes associated with offshore wind events in: (a) 
other months of the California dry 
season (October, December); and (b) 
neighboring regions of western North 
America (e.g., Oregon, Nevada). 

3.  Results 

3.1  California winds 

We correlated u850 in each of our 
four regions with u850 in each of the 
other regions. We found that u850 is 
strongly correlated between all the 
regions, with all but one of the 
correlation coefficient (R) values 
equaling or exceeding 0.9 and one R 
value of 0.8 for the NC-SC correlation. 

Fig. 1  Four California regions for which we analyzed u850. CA: all of 
California; NC: northern California; CC: central California; SC: 
southern California. 

Fig. 2  Monthly mean CA u850 anomalies (m/s) for November 1970-
2020. The orange (green) shading indicates the 16 Novembers with 
strong offshore (onshore) wind anomalies favorable (unfavorable) 
to wildfire. The 51 year trendline is also shown. 
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Based on these results, we determined that CA u850 was a good representation of offshore flow for each 
subregion and for all of California.  

Figure 2 shows CA u850 anomalies for November 1970-2020, with the 16 most offshore Novembers 
indicated by the orange shading. The offshore anomalies have relatively low magnitudes, but represent 
Novembers in which strong and/or frequent offshore flow that was favorable for wildfires occurred. For 
example, the CA u850 anomalies in November 2018 and November 2019 were -1.00 and -1.30 m/s respectively. 
In these two Novembers, several major wildfires occurred, including the Camp and Woolsey fires (November 
2018; NASA 2018) and the Kincade Fire (November 2019). The 51 year trend shown in Fig. 2 has a slope of -
0.2 m/s per decade, corresponding to a 47 percent decrease in CA u850 from 1970 to 2020. 

Our analyses focused on BN winds/periods because they represent offshore wind events. In order to 
characterize offshore periods, we created conditional composites of several atmospheric variables. We then 
identified relationships between, and potential predictors of, CA winds and other climate system variables by 
calculating correlation values. 

3.2  Dynamical patterns 

Figure 3a shows the composite monthly mean ZA200 for the northern hemisphere during the 16 most 
offshore Novembers. Note: (1) the zonally oriented string of alternating positive and negative geopotential 
height anomalies spanning most of the northern hemisphere; and (2) the arcing wave train extending from the 
tropical Pacific near the dateline into the North Pacific-North American-North Atlantic region. These results 
indicate that anomalously offshore winds in California during the month of November are associated with 
anomalous quasi-stationary wave trains. The vertical structure of these wave trains in the extratropics is 
approximately equivalent barotropic. For example, the positive ZA200 over western North America is matched 

Fig. 3  Geopotential height anomalies (m) for the 16 Novembers during 1970-2020 with the most anomalously 
offshore 850 mb zonal winds. (a) 200 mb height anomalies with H and L marking the centers of an 
anomalous wave train spanning the northern hemisphere. (b) 850 mb geopotential height anomaly over 
eastern north Pacific and western North America with schematic black arrows showing the corresponding 
anomalous offshore winds over California. 
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by a positive ZA850 (Fig. 3b). This 
lower-level positive height anomaly is 
directly responsible for the CA u850 for 
offshore wind events.  

Figure 4 shows the composite 
monthly mean 200 mb streamfunction 
anomalies (SFA200) in the Octobers 
preceding wildfire favorable 
Novembers in California. Note the 
anomalous northern hemisphere wave 
train similar to the one shown in Fig. 3. 
This indicates that the processes that 
lead to the November wave train may 
also be occurring in the prior October. 
Note also: (a) the negative-positive pair 
of SFA200 anomalies straddling the 
equator in the Indian Ocean sector; and 
(b) the positive-negative pair of 
SFA200 anomalies straddling the 
equator in the Pacific sector. The 
dashed (solid) black oval indicates the 
negative (positive) tropospheric 
convective anomaly implied by the 
SFA200 anomalies in the Indian 
(Pacific) sector (cf. Matsuno 1966; Gill 
1980). The corresponding November 
SFA200 results are similar to those 
shown in Fig. 4. This indicates that 
offshore wind events in November in 
California may be triggered by 
convective anomalies in October that 
continue into November. 

Figure 5 shows global composite monthly mean SSTAs in Octobers prior to wildfire favorable Novembers 
in California. Note the negative SSTAs in the eastern Indian Ocean (EIO) and the positive SSTAs in the central 
tropical Pacific (CTP). Note also the strong positive SSTA in the eastern North Pacific, which we and other 
colleagues are investigating. The SSTAs in Fig. 5 are representative of those for wildfire favorable Novembers 
and for the prior August and September. 

Figure 6 shows the correlations for 1970 – 2020 between November CA u850 and global SSTs in November 
and in the prior August – October. Thus, Fig. 6 shows the correlations with SSTs leading CA u850 by 3 to 0 
months. Note the region of strong positive (negative) correlations in the EIO (CTP), indicating that negative 
(positive) SSTAs in the EIO (CTP) tend to precede offshore wind events in November in California by several 
months. 

Figure 7 is a schematic of the processes leading to offshore winds in California in November based on the 
results shown in the prior sections. In the months preceding wildfire favorable Novembers, there tend to be 
negative SSTAs and negative convective anomalies near the maritime continent and positive SSTAs and 
positive convective anomalies near the CTP region, which together appear to trigger quasi-stationary wave 
trains that teleconnect the tropics to California. 

Fig. 4  Composite October 200SFA (m2/s) prior to the 16 Novembers 
during 1970-2020 with the strongest anomalously offshore 850 mb 
zonal winds. The dashed (solid) black oval shows the location of 
implied negative (positive) tropical convective anomalies. 

Fig. 5  Conditional composite of global SSTAs (°C) in the Octobers prior 
to the 16 most offshore November CA u850.  
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3.3  Identifying tropical predictors 

We assessed the potential of August-October SSTs in the EIO and CTP boxes to serve as predictors of 
November CA u850 (see Fig. 6). These SSTs are well correlated with November CA u850 at all lead times, 
with correlation magnitudes of approximately 0.4-0.5. We combined the EIO and CTP SSTs into one predictor, 
which we called the Indo-Pacific Index (IPI), calculated as:  IPI = detrended EIO SST – detrended CTP SST. 
Based on this definition and the signs of the correlations shown in Fig. 6, if IPI is below normal in August, 
September, or October, then we would predict California u850 winds to be below normal in the following 
November, and thus fire favorable.  

We applied the IPI to prediction of 
CA u850 winds by including it as a 
predictor in a multiple linear regression 
(MLR) model. We also used the year as 
a predictor in this model. We used the 
IPI to represent interannual processes 
and the year to represent multidecadal 
climate change processes (see 
discussion of Fig. 2). We then used the 
MLR model to hindcast above 
normal/near normal/below normal 
California u850 winds for November 
1970-2019.  Figure 8 shows the skill of 
the model hindcasts at 3, 2, and 1 month 
leads. The lowest skill scores were at 
the 3 month lead, but were substantially 
greater at the two and one month leads. 

4.  Summary and discussion 

We found that November monthly 
mean wildfire favorable winds 
averaged over all of California are 

Fig. 6  Correlations for 1970-2020 between November CA u850 and global SST (°C) in August, September, October, 
and November. Correlation magnitudes greater than 0.24 indicate significance at 95% level or greater. 

Fig. 7  Schematic of the tropical-extratropical processes that lead to 
anomalously offshore winds in California in November. Negative 
(positive) tropical SSTs and convection anomalies are shown by the 
purple (yellow) oval. Positive (negative) upper tropospheric 
geopotential anomalies are shown by red (blue) ovals. 
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linked to tropical-extratropical climate 
variations. The occurrence of these 
winds is associated with anomalous 
quasi-stationary wave trains that extend 
from the tropics to the extratropics and 
throughout the northern hemisphere. 
The wave trains appear to be initiated 
by anomalous sea surface temperatures 
(SSTs) and tropospheric convection in 
the region extending from the central 
tropical Indian Ocean to the central 
tropical Pacific. These winds may be 
predictable at leads up to several 
months using SSTs in this tropical 
region as predictors. Such predictions 
have the potential to be useful in 
mitigating wildfire risks and otherwise 
preparing for wildfires during the time 
of the year when California is most 
vulnerable to dangerous wildfires.  

Our findings also suggest that 
wildfire favorable events have become 
and may continue to become more 
frequent and intense in the future as a 
result of multidecadal climate change. 
If so, the consequences for California 
could be devastating.  

In ongoing research, we are investigating: (1) combined analyses of zonal and meridional winds in 
California; (2) additional months during the California dry season; (3) additional regions in western US; (4) the 
roles of El Niño/La Niña Modoki, Indian Ocean Dipole, Madden-Julian Oscillation, and other climate variations; 
(5) improved statistical and dynamical methods for subseasonal-to-seasonal analysis and prediction of wildfire 
favorable winds (e.g. ridge regression, k-means cluster analysis, Bayesian modeling); and (6) the potential for 
applying our research in wildfire risk management. 
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ABSTRACT 

While our scientific understanding of compound flood risk has made great strides in recent years, there is 
a lack of studies related to stakeholder awareness of the non-linear combination of pluvial, fluvial, and tidal 
flooding, which often occur in coastal storm environments.  Here we present the concept of our NOAA-funded 
project “Preparing for, Responding to, and Mitigating Coastal Compound Water Hazards for Resilient Rural 
Communities” and describe some preliminary survey and focus group data collected from planners, emergency 
managers, and elected officials from across eastern North Carolina. 

1. Background 

 The fact that Hurricanes Floyd, Matthew and Florence devastated eastern North Carolina within a period 
of twenty years calls for a paradigm shift in hazard preparation, response and mitigation. A common question 
following a storm is: “Why did my house/business flood?”  Some people rely on the fact that their properties 
are outside the 100-year flood zone, but understanding flood risk goes beyond reliance on one tool or map. 
Even multiple flood risk tools that are not properly integrated can be inadequate for effective disaster 
management. 

The hurricane hazard is composed of several storm related hazards, with water hazards: surge, pluvial 
flooding (flooding caused by storm water runoff), fluvial flooding, and water-borne health risks often receiving 
highest priority in the coastal plain of North Carolina. However, the consideration of one hazard at a time 
ignores how these water hazards intersect spatially and temporally. Water hazards in the storm environment are 
not independent of each other. For example, copious precipitation, which leads to flash flooding locally, 
accumulates over watersheds and is correlated to fluvial flooding. Strong storm surge, which has been related 
to the co-occurrence of heavy precipitation (Wahl et al. 2015), can also back-up riverine flow, exacerbating 
coastal flooding.    

The combination of multiple hazards that contribute to societal, environmental or health risk is known as a 
compound event (Zscheischler et al. 2018). While compound events have been described in the climate 
literature, they have not been integrated into the disaster management cycle. However, these impactful events 
can “provide a bridge between climate scientists, engineers, social scientists, impact modelers and decision-
makers, who need to work closely together to understand these complex events” (Zscheischler et al. 2018). 

Risks, vulnerabilities and pathways to resilience in rural regions are less well studied and understood as 
compared to their urban counterparts (Cheng, Ganapati and Ganapati, 2015), and rural communities tend to be 
disproportionately affected by compound coastal water events (CCWE) and this cumulative effect of CCWE is 
rarely analyzed. Economic drivers in rural communities, especially in North Carolina tend to be land- and place-
based (MDC 2016); thus, the main source of economic benefit is highly sensitive to CCWE. This project focuses 
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on rural counties in eastern North Carolina located along the coast and those adjacent to it that share estuarine 
environments or linked riverine systems. 

2.  Methods 

The objectives of our NOAA-funded project “Preparing for, Responding to, and Mitigating Coastal 
Compound Water Hazards for Resilient Rural Communities” are to 1) assess the perceived risks and needs of 
the hazards management and planning community in eastern North Carolina through two-way communication, 
2) examine the physical nature and economic and health impacts of CCWE from 2010 to present, and 3) use 
the information obtained to co-produce knowledge and tools with our study group for better preparation, 
response and mitigation plans.  This paper focuses on objective 1 by analyzing select anonymous survey and 
transcript data collected before, during, and after our February 26, 2020 workshop.  At this event 41 planners, 
emergency managers, and elected officials from across eastern North Carolina met at East Carolina University 
to discuss CCWE issues in small focus groups.  Tabletop conversations focused on past experiences with the 
frequency and intensity of rain, river, and ocean induced flooding, and whether they have seen changes in the 
forecasting and communication of these disruptive events.  Each table had a facilitator, who was a project team 
member or Ph.D. student, to guide discussions and a recorder, who was a student, to write key themes and 
quotes on a flip chart.  All conversations were captured with a digital recorder.  Thus, this paper is structured 
around three sources of data: a Qualtrics survey administered prior to the workshop (n=24), paper/audio 
recordings and transcriptions during the workshop, and a Qualtrics survey administered following the workshop 
(n=13).  FEMA flood zones and land cover data were provided by First Street Flood Lab and USGS, 
respectively.  

3.  Results 

3.1  Pre-workshop survey: Perceptions of flooding frequency 

Figure 1 shows the pre-survey results for the question: “How frequent are the following types of floods?” 
in regards to rain-caused, ocean-caused and river-caused.  To minimize confusion in terminology, rain flooding 
was described as “storm water, flash flooding, ponding or pluvial”; ocean flooding was described as “high tide 
flooding, king tide, storm surge, or coastal”; and river flooding was described as “flood plain flooding, over-
topping banks, or fluvial”.  No one thought pluvial flooding was “not applicable” to their 
community/jurisdiction, and 37% felt it was “very frequent” or “constant”.  Thirteen percent of respondents 
believed that fluvial flooding did not apply to them.  Of those that did, 20% felt this type of flooding was “very 
frequent” or “constant”.  Thirty-eight percent of respondents believed that tidal flooding did not apply to them.  
Of those that did, about the same percentage (19%) also placed this flooding into the same two highest 
categories.  Interestingly, 79% of respondents believed that pluvial flooding had become more frequent over 
the past 10 years and no one thought it had become less frequent.  This is compared to 56% (58%) of respondents 
who believed that fluvial (tidal) flooding had become more frequent over the past 10 years.  Further, nine of the 
respondents believed that all three types of flooding were at least “somewhat frequent” in their 
community/jurisdiction and four of the nine believed all three flood types had become more frequent over the 
past 10-years.  This speaks to the nontrivial threat of compound flooding in the study area.  

Fig 1. Responses to the question of the frequency of different types of flood. 
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3.2  Workshop data: Tyrrell County 

As a case study, we isolated concerns 
from participants in Tyrrell County, NC.  
This low-lying rural county is constantly 
threatened by flooding.  Nearly the entire 
county falls within the 100-year floodplain 
(Fig. 2a).  About 7% of its citizens are 
employed in agriculture (ranking 7th out of 
100 counties) and over 25% are living in 
poverty (ranking 5th).  Over 28% of the 
land is classified as cultivated crops, but 
55.5% are woody wetlands (Fig. 2b), 
which are mostly federally or state owned.  
As seen in Fig. 2b, there are distinct 
boundaries between these two land types.  
As expected, the wetlands are more flood 
prone than the agricultural land and this 
can lead to public-private tensions in flood 
management.  As one participant put it: 
“53% of Tyrell County is owned by the 
state or federal government, who won’t let 
us touch it, who won’t go move a tree in it, 
and then wonder why we’re screaming 
about the fact our farmland is flooding…” 

Another participant from Tyrrell 
described how the Soil and Water 
Conservation Districts have evolved in 
response to CCWE: “the Soil and Water 
Conservation Districts in every county 
have for years been more directed towards 
agriculture. It’s all about agriculture. They 
are slowly evolving what they see as their 
mission to a larger discussion, whether it 
be climate change or flooding or whatever. They need to be more in this discussion now, because used to they 
were all about agriculture. That was it. It’s a different world now, and they have accepted that. I’m just not so 
sure they have been viewed regionally for the expertise they bring to this discussion, because they have kind of 
transcended beyond agriculture.  And particularly for Tyrrell, it’s rain-caused and it’s river-caused”. 

3.3  Post-workshop survey: Assessment and COVID-19 

Of the 13 participants who completed our post-workshop survey, 11 (85%) were moderately to extremely 
satisfied overall with the outcomes and all 13 would consider participating in the follow-up workshop 
(originally scheduled for 2021, but now slated for 2022).  A couple of the participants wanted suggestions of 
flood prevention and mitigation measures, which will be a topic of discussion in the second workshop.  There 
was also room for improvement in the facilitation and recording.  As one participant observed: “some seemed 
knowledgeable and did a good job of capturing the concepts presented. Others seemed more unsure and the 
responses recorded on paper either missed a key point or didn’t capture the full breadth of the information 
shared”.  Another participant thought moderators should have been more assertive in guiding the discussion or 
reeling in the focus to the topic at hand. 

Given that the second survey was administered at the onset of the COVID-19 shut down, questions were 
included that asked how the pandemic might change the handling of flood hazard management either 
temporarily or permanently.  Besides delays in implementing ordinances, working virtually and interacting with 

Fig. 2 (a) FEMA designated flood zones by property and (b) 
majority land use type by property in Tyrrell County, NC. 
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partners remotely, it was too early for most respondents to provide insights.  However, one participant worried 
about the future: “What if this [shut down] had coincided with a flood event? What if people in isolation also 
had to be evacuated? What if the only staff in a county or municipality that understood the hazard mitigation 
grant process was also sick? Hurricane season is 8 weeks away.  A significant flood could cause response and 
recovery issues in the flood plain that have never been thought of until now.”  His/her advice was for people to 
plan for the worst-case scenario and to emphasize a message of self-responsibility. “The combination of a 
pandemic and a flood event will overwhelm even the best system in a very short amount of time.” 

4.  Conclusions 

This paper presented some preliminary results from a NOAA-funded project: “Preparing for, Responding 
to, and Mitigating Coastal Compound Water Hazards for Resilient Rural Communities”.  Our sample of the 
hazard management and planning communities in eastern North Carolina thought that pluvial flooding was 
more pervasive and persistent than fluvial and tidal flooding.  In the minds of many of the participants, this 
water hazard had also become more frequent over the past 10 years.  Regarding the compound nature of floods 
(i.e. CCWE), the pre-workshop survey and tabletop discussions confirm that it is of growing concern. 

During the workshop we asked whether there was cooperation across professional and jurisdictional 
boundaries to address CCWE risk.   While most participants gave examples of functional partnerships, two 
themes on the importance of local knowledge and non-local governmental inflexibility did emerge.  One case 
in point is Tyrrell County, NC where there is a disconnect in flood management between state and federally 
owned wetlands and adjacent privately-owned farm lands.  Furthermore, the Soil and Water Conservation 
District is one source of local expertise that is not currently being exploited.  Many more questions were 
explored in the workshop and we’ve identified ten key themes: flood causes, flood preparation, flood response, 
flood recovery, impacts, infrastructure, jurisdictional responsibility, networking and communication, planning 
and policies, and solutions.  To view a mental map of the ten themes and keep up to date on project outcomes, 
we invite the reader to visit the project webpage: https://tinyurl.com/yyzzzz2t. 

Finally, workshop participants were generally pleased with the event and wanted to continue the 
conversation.  Plans are underway to hold a second workshop to satisfy objective 3 and “co-produce knowledge 
and tools with our study group for better preparation, response and mitigation plans”.  Given the concurrence 
of the pandemic with our project, we will also investigate this additional compounded hazard in the second 
workshop. 
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1. Introduction 

 This work builds on ongoing collaboration between climate scientists at the International Research Institute 
for Climate and Society (IRI) and the national meteorological service of Senegal – Agencie Nationale de 
l’Aviation Civile et de la Météorologie (ANACIM). A new seasonal forecasting system developed by IRI was 
explored to assess seasonal climate predictability at different time scales and with different lead times. This 
new forecasting framework is called “NextGen” and is implementing a Python interface to run multi-model 
analyses using the Climate Predictability Tool (CPT). The new Python interface is called PyCPT. 

The NextGen approach to seasonal forecasting creates a framework for user participation and co-production 
of calibrated, objective, multi-model ensemble climate forecasts employing output from an array of Global 
Climate Models (GCMs). This development is consistent with recommendations from the World 
Meteorological Organization that National Meteorological Services develop means of producing objective 
forecasts that contain information about the full forecast distribution. The analytical tools for PyCPT/NextGen 
are the same statistical methods used in CPT: canonical correlation analysis, principal component regression 
and multiple linear regression. The forecasts generated from NextGen/PyCPT show a full forecast distribution 
in a flexible manner that enables the users to select thresholds of interest and explore probabilities of exceedance 
and non-exceedance of those thresholds. The general flow diagram for NextGen is shown below in Figure 1.  

From the early 2020 to the present, there has been an ongoing collaboration between IRI and ANACIM to 
foster this work and share research findings on various aspects of Senegal’s monsoon system. This work has 
been part of the Adapting Agriculture to Climate Today for Tomorrow (ACToday) Columbia World Project 
and has been focused on seasonal rainfall prediction, seasonal rainy-day prediction, forecast skill evaluation, 
and seasonal onset prediction. In April 2021, there was a virtual training on this new forecast system with 
ANACIM staff.  

2.  Data and methods 

In the preliminary analysis, the forecasting method used was canonical correlation analysis and rainfall 
from five GCMs (COLA-RSMAS-CCSM4, GFDL-FLOR-A06, GFDL-FLOR-B01, NASA-GEOSS2S, NCEP-
CFSv2) were used as predictors to forecast observed (CHIRPS) rainfall. These models are part of the North 
American Multi-Model Ensemble (NMME). One analysis explored the predictability of the July-September 
(JAS) rainfall from multiple lead times from February to June and examined the skill of individual models. For 
this analysis, both the predictor and predictand domain was 10-20°N, 10-20°W.   

Fig. 1  The NexGen forecast system workflow. 
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Another analysis explored the predictability of seasonal rainfall and rainy-day frequency (in excess of 1mm) 
for five sub-seasons (May-July (MJJ), June-August (JJA), July-September (JAS), August-October (ASO), 
September-November (SON)) with a one-month lead time in each case. For this analysis, the NextGen forecast 
is synthesized from the five member models and the predictor domain is 20-0°W and 5-20°N, while the 
predictand domain is the same as before.  

NextGen forecast skill was also compared to historical subjective forecasts made by the Prévisions 
Climatiques Saisonnières en Afrique Soudano-Sahélienne (PRESASS) Regional Climate Outlook Forum 
(RCOF). This analysis has been focused on analyzing the ranked probability skill score (RPSS) of the past 
PRESASS RCOFs and the NextGen forecast.  

More recent research collaboration between IRI and ANACIM has focused extensively on trying to find 
the best candidate predictors for seasonal onset date on the basis of station rainfall data, several gridded rainfall 
products and several possible definitions of onset date. There have also been some more recent developments 
in the capacity of PyCPT and in the inclusion of model data from the European Copernicus model suite, but 
those developments are not shown here.   
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Fig. 2  JAS precipitation forecast Pearson correlation skill, initialized from February to June (from left to right) 
and by COLA-RSMAS-CCSM4, GFDL-FLOR-A06, GFDL-FLOR-B01, NASA-GEOSS2S, NCEP-CFSv2 
(from top to bottom). 

Fig. 3  Pearson correlation skill of NextGen one-month lead seasonal forecasts of rainfall (top) and rainy day 
frequency (bottom).  From left to right show the results for MJJ, JJA, JAS, ASO, and SON. 
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3.  Analysis and results 

The main findings of 
the first analysis of the five 
GCMs for JAS rainfall are 
shown in Figure 2, which 
displays the Pearson 
correlation of the five 
models and five 
initializations mentioned 
above with the target season 
(JAS).  

Note that there is 
particularly high skill at 
early lead times for the 
NASA model, and to a 
lesser degree with the NCEP and COLA models. At a one-month lead time (forecast initialized in June), all 
models except COLA perform quite well.  

Figure 3 shows the results of the second analysis of the NextGen forecast skill for one month lead times for 
the sub-seasons MJJ, JJA, JAS, ASO and SON (again in terms of Pearson correlation skill). Note that there is 
particularly good skill for the core of the rainy season (JAS) for both rainfall total and rainy-day frequency.  

Figure 4 shows the results of the third analysis of the NextGen forecast skill compared with the historical 
PRESASS skill in terms of RPSS. This was calculated by digitizing the findings in Pirret et al. (2020).  Note 
that the NextGen forecast RPSS skill compares favorably with the historical PRESASS forecast skill.  

NextGen forecasts can be displayed through digital maproom interfaces that can show the forecast 
probability of exceedance of user-specified thresholds as illustrated by Figure 5 below.  

0 

5 

10 

15 

-5 

-10 

-15 

Jul-Sep (init. Jun) 

R
PSS (all categories) 

Fig. 4  JAS precipitation forecast RPSS skill of NextGen (left) and the historical 
PRESASS (right). 

Fig. 5  Flexible IRI Climate and Society Maproom display examples. 
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User specified thresholds may be more salient than “tercile” categories which have been the historical 
method of presenting forecast information at many regional climate outlook forums (RCOFs). Historically, the 
RCOFs have had a tendency to hedge on the “near normal” category” (Mason and Chidzambwa 2009)). This 
new approach is less inclined to do so. 

4.  Conclusions and discussion 

In this research, we have shown that the new NextGen approach to seasonal forecasting in Senegal can 
provide valuable insights in the form of high forecast skill with specific models at an early lead time, high 
forecast skill for seasonal rainfall totals and rainy-day frequency during the core of the rainy season, and may 
outperform more subjective approaches taken in the PRESASS RCOF in the past.  

This new forecast method may also give the user more flexibility in defining relevant thresholds. Future 
work will focus on forecasting onset dates, dry spells and using wind fields (Ndiaye et al. 2009) as a means of 
prediction of seasonal climate characteristics in Senegal.  
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1. Introduction 

 The University of Pretoria (UP) is part of the seasonal forecasting community in South Africa.  Even 
though official seasonal forecasts are only issued by the South African Weather Service (SAWS), UP has been 
routinely producing seasonal forecasts of rainfall and temperatures for southern Africa, global SSTs and tailored 
products for the region since 2017 (https://www.up.ac.za/geography-geoinformatics-and-meteorology/article/ 
2418168/ willem-a-landman). UP also contributes to the IRI/CPC ENSO forecast plume (marked “CS-IRI-
MM”). In order to produce these forecasts, forecast output of the coupled ocean-atmosphere models 
administered through the North American Multi-Model Ensemble (NMME) prediction experiment 
(http://www.cpc.ncep.noaa.gov/ products/NMME/; Kirtman et al. 2014) is used. NMME real-time seasonal 
forecast and hindcast (re-forecast) data are obtained from the data library (http://iridl.ldeo.columbia.edu/) of the 
International Research Institute for Climate and Society (IRI; http://iri.columbia.edu/). The routinely produced 
NMME forecasts are statistically improved and tailored for southern Africa and for global SSTs by employees 
and post-graduate students in the Department of Geography, Geoinformatics and Meteorology at UP 
(http://www.up.ac.za/en/geography-geoinformatics-and-meteorology/). Statistical post-processing and forecast 
verification are performed with the Climate Predictability Tool software (http://iri.columbia.edu/our-
expertise/climate/tools/cpt/).    

This workshop contribution introduces a seasonal forecasting entity at UP called Seasonal Forecast Worx 
by presenting examples of the forecasts produced on a monthly basis. 

2.  Data and methodology 

2.1 SST forecasts 

Forecasts for global SST fields are obtained through a combination of NMME models and a linear statistical 
model that uses antecedent SST as a predictor (Landman et al. 2011). Forecasts for the Niño3.4 area are derived 
from the global forecasts. First, SST forecasts from the NMME models are variance and bias corrected, after 
which they are combined with the forecasts from the statistical model through simple averaging of the forecasts. 
Global forecasts are represented as anomalies and made available for forcing atmospheric global climate models 
in South Africa used for seasonal forecasting. Three-month Niño3.4 SST forecasts are produced for three 
categories, viz. SST above the 75th percentile of the climatological record (El Niño), SST below the 25th 
percentile of the climatological record (La Niña), and neutral (neither El Niño nor La Niña). 

2.2. Southern Africa rainfall and temperatures forecasts 

Three-month seasonal rainfall totals and average maximum temperatures of NMME ensemble mean 
forecasts are interpolated to Climatic Research Unit (CRU; Harris et al. 2014) grids (0.5°x0.5°), by correcting 
the mean and variance biases of the NMME forecasts. Probabilistic forecasts are subsequently produced from 
the error variance obtained from a 5-year-out cross-validation process. Forecasts cover a 6-month period and 
are produced for three categories of above-normal (rainfall totals or maximum temperatures higher than the 
75th percentile of the climatological record), below-normal (rainfall totals or maximum temperatures lower 
than the 25th percentile of the climatological record), and near-normal. However, probabilistic forecasts are 
only presented for the outer two categories since forecast skill for near-normal is low over areas such as southern 
Africa (Landman et al. 2019; Mason et al. 2021). Verification results, represented by ROC scores for both the 
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above- and below-normal categories for rainfall and for temperatures, are presented along with the probability 
forecasts. The scores are calculated over a 23-year test period.  
2.3. Tailored forecasts 

The GFDL-CM2p5-FLORB01 model was used to test the predictability of the incidence of seasonal malaria 
in the Limpopo province of South Africa (Landman et al. 2020b). However, for operational malaria forecasting 
the GFDL-SPEAR hindcasts and forecasts are used.  GFDL model output is also used to continue with work 
on inflow predictability of Lake Kariba 
(Muchuru et al. 2016), and for end-of-
season crop yield. Archived values of the 
latter have been provided by the farmer and 
are used as the predictand in a statistical 
model that uses GFDL rainfall fields as 
predictor. As with the yield data, a number 
of farmers in South Africa and Namibia has 
made the archived rainfall records of their 
farms available. GFDL rainfall fields are 
subsequently used in a statistical model to 
predict seasonal rainfall at the farm based 
on the farmer’s own data (Landman et al. 
2020a). Recently, antecedent rainfall totals 
in the Vaal River catchment have been 
successfully used as predictor for seasonal 
flows downstream of the Vaal Dam. 

3.  Research and forecast work   
3.1 Predictability research 

Predictability research on southern 
African seasonal rainfall variability is 
mostly focused on the austral summer 
rainfall regions. However, the NMME was 
recently used to demonstrate that there also 
exits seasonal rainfall predictability over 
the austral winter rainfall region of the 
Southwestern Cape (Archer et al. 2019). In 
a second study, southern Africa’s rainfall 
predictability was compared with the 
predictability of regions globally which are 
also affected by ENSO. The work showed 
that southern Africa’s summer 
predictability ranks in more or less the 
bottom third of the regions considered 
(Landman et al. 2019). 

3.2  Forecast products 

Tailored forecasts are routinely 
produced in addition to the global SST and 
southern African rainfall and temperature 
forecasts. These tailored forecasts have 
impacted on specific applications of 
seasonal forecasting, such as hydrology 
(Lake Kariba and Vaal Dam), agriculture 

Fig. 1  Probabilistic Dec-Jan-Feb forecasts for three categories of 
above-normal (red), near-normal (yellow) and below-normal 
(green) incidence of seasonal malaria in Limpopo, South 
Africa. Retro-forecasts (2017/18 to 2019/20) and the real-time 
forecast of 2020/21 were produced during the preceding month 
of October, which constitutes a 2-month lead-time. 

70 

Fig. 2  Probabilistic end-of-season (2021) crop yield forecasts made 
in September 2020 for above-normal, near-normal and below-
normal yields for a farm near Bapsfontein, South Africa. 
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(crop yields) and health (malaria in Limpopo) in the region. One such a tailored forecast product that has a 
particular user’s interest is the seasonal malaria occurrence forecasts produced for the Department of Health of 
the Limpopo province in South Africa. Figure 1 shows forecasts for the austral mid-summer produced near the 
beginning of October 2020. Another example of a tailored forecast is for probabilistic end-of-season crop yields 
for a farm near the town of Bapsfontein (Fig. 2). Both the malaria and yield forecasts are showing enhanced 
probabilities for the categories most likely to occur during the anticipated wet austral summer season associated 
with the La Niña event of 2020/21. 

4.  Concluding remarks 

The seasonal forecasting effort at UP is based primarily on the use of archived and real-time forecasts from 
the NMME in order to produce a range of forecast products. These products serve a number of users including 
the general public, fellow climate scientists, farmers, dam managers and health practitioners. Sustained 
maintenance and improvement of the NMME forecast system will undoubtedly continue to help UP with this 
seasonal forecasting service that is geared towards the southern African community affected by climate 
variability. 
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1. Introduction 

In support of NOAA’s initiatives to improve skill of sea ice forecasts in week 3-4 time-range, the Climate 
Prediction Center (CPC) has been using an experimental sea ice prediction system, CFSm5, to provide weekly 
and seasonal Arctic sea ice predictions. The CFSm5 was developed based on the Climate Forecast System 
(CFS) with the MOM5 as oceanic component. Sea ice forecasts from CFSm5 initialized from CPC sea ice 
initialization system (CSIS) have been shown to be significantly improved over that from the operational CFS. 
CPC started in 2020 to prepare a transition from the use of CFSm5 for sea ice predictions to that of a new FV3-
based Unified Forecast System (UFS) framework. In this work, we evaluate sea ice prediction in UFS during 
summer and investigate impacts of cloud related parameters for an improved representation of sea ice in the 
model. A comparison between CFSm5 and UFS is also discussed. 

2.  The coupled UFS model 

The coupled UFS Subseasonal to Seasonal model (S2S) model in this study consists of the FV3 atmospheric 
component, the MOM6 oceanic component and the CICE5 sea ice component. All model components are 
coupled using the NOAA Environmental Modeling System (NEMS) infrastructure. The FV3 includes the 
GFSv15 Physics that contains Scale-aware Simplified Arakawa-Schubert Scheme for convection (Han and Pan 
2011), Hybrid Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization, and GFDL 
microphysics with 5 prognostics cloud 
species. The UFS version is Prototype 
3.1 (P3.1). The FV3 horizontal 
resolution is C96 (~1o). The ocean and 
sea ice model resolution is 0.25o. The 
UFS P3.1 uses atmospheric initial 
conditions from the Climate Forecast 
System Reanalysis (CFSR, Saha et al. 
2010). The ocean and sea ice initial 
conditions come from CSIS, which 
assimilates NASA Team sea ice 
concentration (SIC) and National 
Center for Environmental Information 
(NCEI) Sea Surface Temperature. The 
UFS P3.1 hindcasts are initialized from 
1st of May-Sep. and Nov., 2012-2019. 
The CFSm5, CFSv2 hindcasts, NASA 
Team and Bootstrap SIC are used for 
verification.   
3.  Initial comparison and parameter 
adjustment  

Figure 1 compares a 4-month lead 
hindcast  of  September  SIC  from  UFS  

Fig.1 September SIC hindcasts initialized from June 1, 2012 for UFS 
P3.1 and CFSm5 compared with NASA Team and Bootstrap SIC. 
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Fig. 2 Climatology September SIC hindcasts initialized from June 1, 2012-2019 for UFS P3.1 control run, C20, 
CFSm5, CFSv2, compared with NASA Team and Bootstrap SIC. 

-120               -80                -40                   0                  40                 80                 120 

Fig. 3 Upper: June downward shortwave radiation bias from EBAF (Jun 1, 2012-2019 initial dates. Lower: 
August SST bias from OSTIA (Jun 1, 2012-2019 initial dates). Left: UFS control run. Middle: UFS C20. 
Right: CFSm5.   
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P3.1 using control configuration with the hindcast from CFSm5 and observational analyses from NASA Team 
and Bootstrap SIC. The hindcasts were initialized from June 1, 2012. As shown in Fig. 1, there is a large 
negative ice bias in parts of the central Arctic for UFS P3.1. A further analysis indicated this is related to the 
positive downward SW radiation bias and negative cloud fraction bias in central Arctic (not shown). To reduce 
this negative sea ice bias, three cloud parameters are adjusted, including the critical cloud drop radius (rthresh), 
cloud condensation nuclei (ccn_o) and auto conversion coefficient from cloud water to rain (c_paut). A series 
of 23 experiments (C1 to C23) initialized from June 1, 2012-2019 were performed for different combinations 
of three parameters.  The setting for experiment C20 produces an overall best sea ice characteristic. The three 
adjusted parameter values in C20 for rthresh, ccn_o, and c_paut are 12.0e6, 120.0, and 0.45, compare to 10.0e6, 
100, and 0.5 in the control configuration.  

September SIC in UFS C20 is compared with UFS Control, CFSm5, and NASA Team and Bootstrap in 
Figure 2. Sea ice edges in the NASA Team and Bootstrap are very similar while SIC in Bootstrap is generally 
larger than that in NASA Team. The operational CFSv2 maintains too much sea ice. CFSm5 has significant 
improvement than CFSv2. The SIC in C20 is improved over Control and shows overall smaller errors among 
all experiments. Therefore, the C20 setting is selected for the final configuration for UFS 45 days hindcasts.  

The downward shortwave radiation (DSW) and sea surface temperature (SST) are further examined for the 
UFS C20 experiments. As shown in Fig.3, the DSW bias in C20 is reduced around the Bering Strait and the 
North Pacific compared with the UFS Control run. The negative DSW bias in C20 in tropics is reduced 
compared with CFSm5. The cloud fraction bias is also reduced in the C20 setting (not shown). For SST bias, 
there is also reduced warm SST bias in C20 around Bering Strait and reduced SST bias in C20 in mid-latitude 
and tropics compared with CFSm5.     

4.  Sea ice prediction skill assessment 

A Heidke skill score (HSS) is used to assess the Arctic sea ice forecast performance. The HSS is calculated 
based on the forecast of presence or absence of sea ice.  Sea ice is considered to exist in the forecast or 
observation if the SIC is greater than 15%.  The HSS is defined as  

e

e
ACAT
ACACHSS

−
−

=

where AC is the total area of correct forecast, ACe total area of expected correct forecast based observed 
climatology, and AT the total area of all grid boxes being considered. It is shown that for the select initial dates 

Fig. 4 Arctic sea ice forecast Heidke Skill Score from 1 week to 6 weeks for selected initial dates of  May 1, 
June 1, July 1 (upper), August 1, September 1 and November 1 (lower) of 2012-2019. 
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(1st of May-Sep and Nov, 2012-2019), 
prediction skills of UFS C20 are 
comparable to or slightly higher than 
that of CFSm5 (Fig.4). UFS and 
CFSm5 have significantly higher skills 
than operational CFSv2 for both sea ice 
melt (Fig. 4). Particularly for winter 
seasons, the Arctic sea ice cover in UFS 
C20 is closer to observed estimates than 
CFSm5, especially around the Bering 
Sea, and in Atlantic (Fig.5). 

5.  Summary and discussions 

There are biases in the UFS P3.1 
control configuration in the downward 
shortwave radiation and cloud fraction, 
causing less sea ice coverage in the central Arctic during boreal summer. The adjustment to the three cloud 
parameters reduces model bias in terms of DSW, SST and SIC. The selected configuration (C20) shows 
comparable or better performance than CFSm5 for selected initial dates for sea ice melt/freeze up seasons, 
especially larger improvement in Bering Sea and Atlantic for winter seasons. We will continue to perform 45-
day hindcasts from 2012-2019 for sea ice melt seasons as well as for the freeze-up seasons, and compare with 
CFSm5 and CFSv2 hindcasts. We are also developing the bias correction algorithms (e.g. mean bias correction 
or cumulative distribution function mapping) for UFS based real-time sea ice weekly forecasts. The current 
CSIS only assimilates the observed SIC. Additional information of observational estimates of sea ice thickness 
(SIT) may provide more accurate initial sea ice conditions for the predictions. 
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Fig. 5 Climatology month-4 SIC (February) initialized from Nov. 1, 
2012-2019. Left: UFS C20. Right: CFSm5. 
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ABSTRACT 

As one key innovation in the NOAA hydrological modelling, National Water Model (NWM) was recently 
upgraded to v2.0 in June 2019.  The NWM could provide not only the streamflow prediction for hydrological 
guidance, but also the real-time high-resolution land state analysis and assimilation.  Based on the NWM v2.0 
retrospective analysis from 1993 to 2018, we evaluated NWM soil moisture (SM) and evapotranspiration (ET) 
for the drought monitor application.  The Soil Moisture Percentile (SMP) from NWM is compared with the 
official US drought monitor (USDM) map in major drought events.  The drought categories Dx based on NWM, 
is quantitatively compared with similar drought monitor from the North American Land Data Assimilation 
System Phase 2 (NLDAS2) ensemble.  A long time-series soil moisture monitor from Climate Prediction Center 
(CPC) leaky bucket model is also compared against NWM, to distinguish the importance of the long temporal 
record versus high spatial resolution for drought monitor.  The Evaporative Stress Index (ESI) based on ET 
estimation from NWM is also assessed for the rapid drought development, i.e. flash drought, to evaluate 
evapotranspiration for the drought development.  The preliminary results indicated the NWM could well capture 
the major droughts during 2000 to 2018 and 2019 Southeast flash drought, showing great potential in the future 
application for drought monitor. 

1. Background 

 Drought is a natural disaster with high hazardous impacts on the society.  However, due to the nonlinear 
nature of climate system, in particular the water cycle associated over the land surface, accurate monitoring and 
forecast drought remains a challenging scientific problem.  Drought not only impacts food/agriculture, but also 
impacts on livestock, energy production, wildlife, public health, and may even enhance or cause wildfires, 
among other disasters. 

The National Water Model (NWM) is a recent implementation of hydrologic modelling framework that 
simulates observed and forecast streamflow over the entire continental United States (CONUS).  The NWM is 
based on the WRF-hydro model that simulates the water cycle with mathematical representations of complex 
physical processes, such as snowmelt and infiltration and movement of water through the soil layers that varies 
significantly with changing elevations, soils, vegetation types and a host of other variables.  The NWM 
simulates and forecasts streamflow and other hydrologic quantities over the CONUS at 1-km to 250-m spatial 
resolutions with lead times ranging from hours to weeks.  Land-surface processes are modeled using the Noah-
Multiparameterization (NOAH-MP) land surface scheme (Niu et al. 2011) as deployed in the Weather Research 
and Forecasting-Hydrological (WRF-Hydro) modeling framework.  The NOAH-MP code was optimized to 
perform partitioning of latent and sensible heat fluxes from the total radiation budget and provide lower 
boundary conditions for the Weather Research and Forecasting (WRF) mesoscale meteorological model.    

The advantages of NWM over the existing drought-monitoring tools include: higher spatial resolution, 
decreased latency, and a single integrated model providing all inputs in a physically consistent framework for 
the CONUS at river-basin resolution.  Improvements in the physical representation of the NWM will increase 
its accuracy. In particular, the near real-time Analysis and Assimilation (A&A) cycle could provide soil 
moisture state real-time, greatly reduce the lagging of 4-5 days in the NLDAS2 analysis.  In the CPC, we 
recently evaluated the NWM as the monitoring tools for the drought information service. 
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2.  Data 

2.1 Rasterized USDM data  

Led by the National Drought Migration Center (NDMC), the USDM (http://droughtmonitor.unl.edu and 
drought.gov) is the nation’s drought monitoring information product of current drought conditions.  Established 
in 1999, the weekly USDM map uses a ranking/percentile system to facilitate the integration of numerous 
drought analyses and indices and classify the drought into one abnormally dry category (labeled D0) and four 
drought categories (D1, moderate drought; D2, severe drought; D3, extreme drought; and D4, exceptional 
drought) that reflect dry conditions below the 30th, 20th, 10th, 5th, and 2nd percentiles, respectively. 

A rotating lead author, from the four primary workgroups (the NDMC at the University of Nebraska–
Lincoln, the U.S. Department of Agriculture (USDA), the NCEP CPC, and the National Centers for 
Environmental Information (NCEI)),  uses his/her best judgment to reconcile differences from a broad range of 
input sources to construct a draft USDM map. The draft map is reviewed by over 350 local- to national-level 
drought coordinators, agency leads, and experts.  After their feedback, the lead author incorporates the field 
feedback to target a “convergence of evidence” consensus indicating a single drought severity category. The 
resulting final USDM map depicts this category, either for only one (specially noted) type of impact or for all 
facets of drought combined (i.e., meteorological, hydrological, and agricultural are widely accepted drought 
aspects).  The original USDM outputs are in the ArcGIS shape files.  We rasterize all the ArcGIS shape file to 
the regular lat-lon grid at 1/8 degree resolution.  

2.2 NWM 

The standard A&A cycle of NWM produces a real-time hourly analysis of the current streamflow and other 
land surface states across the CONUS. This analysis and assimilation configuration is internally cycling, with 
each subsequent standard analysis starting from the previous hour’s run.  Meteorological forcing data are drawn 
from the Multi-Radar/Multi-Sensor (MRMS) Gauge-adjusted and Radar-only observed precipitation products 
along with the short-range Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) dataset, while 
stream-gauge observations are assimilated from the U.S. Geological Survey (USGS).  The NWM v2.0 
retrospective run is available from 1993 to recently, and will be the major dataset for this study. 

2.3 NLDAS2 land surface models 

The NLDAS2 (Xia et al. 2014) four land surface models (LSMs) output is used as a comparison for NWM 
soil moisture, since the NLDAS2 is currently considered operationally by USDM authors. The NLDAS2 
contains output from four LSMs, i.e., the Noah model, the Variable Infiltration Capacity (VIC) model, the 
Sacramento (SAC) model, and the NASA Mosaic model.  Output from these LSMs is available on a ⅛-degree 
grid across CONUS from 1979-present, and the same NLDAS2 meteorological fields are used for forcing data 
as the NWM retrospective simulation. 

3.  Procedures 

3.1 Soil moisture percentile 

Soil-moisture percentiles, used in this study, are calculated as follows.  An empirical climatological 
probability density function (PDF) is created for each grid point, total column, and each day of the year using 
a 29-day centered window to aggregate volumetric soil moisture values.  We selected the soil moisture of only 
5 days, i.e., two weeks before, one week before, current day, one week later and two weeks later.  This PDF is 
then used to calculate the 2nd, 5th, 10th, 20th, and 30th percentile values as well as the median and interquartile 
range for each day, grid-point, and level.  The full length of record (1993-2018) is used to calculate NWM soil 
moisture percentile values when not being directly compared with observations. 

3.2. Evaluation metric 

The contingency table metric is used to compare the fraction of correctly simulated events to the number 
of observed events.  It includes: the probability of detection (POD), the false alarm rate (FAR), the critical 
success index (CSI) and the bias (BIAS).  The CSI is the ratio of correctly simulated events to the total of correct 
events, missed events, and false alarms. In our evaluation, ‘events’ are days in the NWM retrospective 
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simulation with soil moisture values below the specific threshold, i.e.10th percentile, which are then compared 
with days of soil moisture below this threshold in observations.  The CSI ranges between 0 and 100%, with 
100% being a perfect simulation.  The performance diagram is based on the contingency table to summarize all 
above information into one diagram (Roebber 2009). 

4.  Results 

Figure 1 shows the performance diagram of SMP evaluated against the USDM. The left panel shows the 
original SMP derived from the NWM based on the relatively short 26 years retrospective period.   The NWM 
SMP could well catch the major drought during 2000 to 2018, and in particular the 2012 Northern Great Plains 

Fig. 1  The performance diagram for the NWM model SMP against the USDM drought categories.  The left 
panel shows the original SMP <30% evaluated against the USDM D0 drought events over the CONUS. 
The scatter dots represent every week from 2000 to 2018.  The right panel shows the improved SMP 
monitor by merging with long-term drought events. 

Fig. 2  The 2019 Southeast flash drought monitored by the NWM.  The top panel is the percentage of area 
covered by flash drought indicated by the USDM, and the bottom panel is based on the NWM SMP 
monitor.  For comparison and contrast, the bottom panel y-axis is reversed. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

100 

drought (the yellow colored dot during 2012 to 2013).  However, due to the short retrospective period (only 26 
years available), it is not good for monitoring the long-term droughts in the western region.  In particular 
considering the Western region is in the relative dryer decade in the last 20 years. But, by merging with long-
term drought information by joint probability methods, the NWM greatly enhanced the ability to detect the 
drought events indicated by the USDM (right panel at Fig. 1).  The Probability of detection has been greatly 
enhanced and the overall CSI has been improved to around 0.8. 

In particular, the NWM demonstrated great ability to capture the flash drought.  Figure 2 shows the example 
of the real-time NWM SMP monitor during 2019 over the Southeast US region.  The top panel shows the 
percentage area covered by D0-D4 drought as indicated by USDM, and the bottom panel shows the same 
percentage area as calculated by SMP from NWM for the corresponding threshold for D0-D4 drought. For easy 
comparison and contrast, the bottom panel’s y-axis is reversed.  It can be seen from USDM (top panel) that the 
drought evolved quickly in September to a D3 category; worsening further to D4 in October, and coming to an 
end in December.  Interestingly, the same timely evolution and the demise of the short-lasting flash drought 
over the region was also caught well by the NWM based SMP (bottom panel). 

5.  Conclusions 

Based on the NWM v2.0 retrospective analysis from 1993 to 2018, we evaluated NWM SM and ET for the 
drought monitor application.  The Soil Moisture Percentile from NWM was compared with the official US 
drought monitor map in major drought events.  The drought categories Dx based on NWM, was quantitatively 
compared with the rasterized USDM map.  The preliminary results indicated the NWM could well capture the 
major droughts during 2000 to 2018 and 2019 Southeast flash drought, showing great potential in the future 
application for drought monitoring. 
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ABSTRACT 

This study focused on the analysis of pre-monsoon and monsoon precipitation patterns in the Ganges-
Brahmaputra-Meghna (GBM) basin.  It shows a positive correlation for the precipitation between nearby 
sub-basins of the GBM during pre-monsoon and especially monsoon seasons.  However, only two sub-
basins of the GBM show a correlation between pre-monsoon and monsoon precipitation among the 32 
hydrological sub-basins, indicating no relation between pre-monsoon and monsoon precipitation patterns in 
the GBM river basin.  Further work is in progress to understand the variability of precipitation in time and 
space within the GBM and coastal Bangladesh to better understand annual riverbank erosion at the 
Bangladesh outlet. 

1. Introduction 

 The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third-largest river basin covering 
approximately 1.72 million km2 of five different nations.  It is a transboundary river basin that crosses Nepal, 
Bhutan, India, China, and Bangladesh (FAO 2011).  The GBM river basin is elongated from the foothills of the 
Himalayan Mountains to the Bay of Bengal and has a unique physiographic feature that leads to four seasons 
in this region (Islam et al. 2010). This study focuses on two major seasons, pre-monsoon that runs from March 
through May, and the monsoon season that runs from June through September.  The GBM river basin receives 
70 to 80% of annual rainfall during the summer monsoon (Mirza 2011) and the remaining 20 to 30% in the dry 
season.  Monsoon rainfall is highly unpredictable, and it causes severe hardship to millions of people living in 
the GBM basin, especially those living in the low land of Bangladesh and India.  Some spatial and temporal 
patterns may be predictable, which would aid decision-makers and stakeholders in managing water resources 
and natural hazards (Mosaffa et al. 2020).  There is always a risk of moderate to severe floods, riverbank 
erosion, and landslides in the GBM river basin. It has a high impact on agricultural land, infrastructures, 
properties, human settlements, and environments. Therefore, it is necessary to analyze seasonal precipitation 
patterns for better preparation and adaptation. The current study is a part of the NSF-funded project “Coastal 
Erosion Vulnerabilities, Monsoon Dynamics, and Human Adaptive Response.” It aims to examine the 
relationship between pre-monsoon and monsoon precipitation patterns of the GBM sub-basins to give a broader 
perspective on the relationship between seasonal precipitation patterns and riverbank erosion in Bangladesh's 
outlet. 

2.  Data 

The study of precipitation variability requires reliable and long-term precipitation data sets. However, 
reliable data availability is still a significant challenge in developing countries (Tan et al. 2017).  The limited 
numbers of rain gauges make it difficult to study decadal change in precipitation patterns. Multiple numbers of 
satellite-based products have been rapidly used over the past few decades and are highly applicable for 
estimating precipitation at regional and global scales.  Among the several satellite-based precipitation products, 
this study used the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 
Networks-Climate Data Record (PERSIANN-CDR) satellite data to analyze pre-monsoon and monsoon 
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precipitation patterns in the GBM river basin from 1983 to 2019. The PERSIANN product developed at the 
Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine, collaborates 
with NASA, NOAA, and the UNESCO program for the Global Network on Water and Development 
Information for Arid Lands (G-WADI).  It has been used continuously for different studies throughout the 
world by researchers in climate change, hydrology, water resources management, natural disasters, and hazards 
(Nguyen et al. 2018). The bias-corrected final product, called PERSIANN-CDR, estimates global precipitation 
with 0.25 x 0.25-degree spatial resolution. It covers the area between 60°S and 60°N, and 0° and 360° longitudes, 
and provides rainfall data every 3 hours from 1983 to the present (Ashouri et al. 2015; Katiraie-Boroujerdy et 
al. 2017).  The PERSIANN-CDR is advantageous and reliable, covering more than 30 years of precipitation 
data, which is appropriate for studying climate change, drought, extreme weather events, and other natural 
hazards (Khalighi-Sigaroodi et al. 2019; Ashouri et al. 2015).  

3.  Methods 

The required precipitation data was retrieved from the CHRS portal (http://chrsdata.eng.uci.edu). The 
PERSIANN-CDR precipitation data were averaged separately over the pre-monsoon season March-April-May 
(MAM) and monsoon season June-July-August-September (JJAS) in ArcGIS.  The PERSIANN-CDR grid cells 
were averaged over the 32 hydrological sub-basins in the GBM basin. The basins were extracted using the 
HydroBASIN GIS layer from the World 
Wildlife Fund (Lehner and Grill 2013).  
The intra-basin relationship of 
precipitation, based on averages over 32 
hydrological sub-basins, were analyzed 
using correlation statistics in the R 
programming language for the pre-
monsoon and monsoon seasons. The 
Pearson correlation coefficient was used 
for the relationship between seasonal 
precipitation in the GBM river basin, and 
the correlation coefficient was tested at 5% 
significance.  

(b) (a) 
Fig. 1 (a) The pre-monsoon precipitation correlation between 32 hydrological sub-basins of GBM and (b) 

monsoon precipitation correlation between 32 hydrological sub-basins. Each row and column show one 
results for a single sub-basin with the others.  

Fig. 2  Example of pre-monsoon precipitation correlation for sub-
basin 45243 with all sub-basins. 
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4.  Results 

 Figure 1 (a) and (b) shows the 
correlation among the 32 hydrological sub-
basins for pre-monsoon and monsoon 
precipitation, respectively. Each row or 
column of the figure shows the correlation 
of one sub-basin with all sub-basins. The 
blue color indicates a positive correlation, 
and the red color indicates a negative 
correlation. Deeper color with a bigger 
circle indicates a stronger correlation 
between the sub-basins.  It should be noted 
that there are many more positive 
correlations in the monsoon case compared 
to the pre-monsoon case.  The only sub-
basin that has a preponderance of large 
negative correlations with other sub-basins 
in the monsoon season is 45248 in the far 
western GBM (not shown).  Figure 2 and 3 
are examples of the correlation between 
sub-basin 45243 and all other sub-basins 
for pre-monsoon and monsoon 
respectively, which is the same as the sixth 
row and column of Fig. 1 (a) and (b), 
respectively.  Each map's deeper blue and 
green color indicates a strong positive 
correlation. The maps show clearly the 
typical spatial dependency of precipitation 
in the GBM during pre-monsoon and 
monsoon seasons. Among the 32 
hydrological sub-basins, only two sub-
basins of the GBM show a significant 
correlation between pre-monsoon and 
monsoon precipitation as shown in Fig. 4.  
Sub-basin 45245 has a significant negative 
correlation and 45280 has a significant 
positive correlation.  The overall pattern is 
for negative correlations in the western and 
northern GBM and positive correlations in 
the eastern and southern GBM.  

5.  Conclusions 

The results show 1) the pre-monsoon season has less spatial dependency in precipitation as organized by 
sub-basin boundaries compared to the monsoon season, and 2) there is limited significant correlation between 
pre-monsoon and monsoon precipitation patterns in the GBM river basin. The reason might be that pre-
monsoon rainfall occurs due to tropical maritime air masses (Kumar and Naidu 2020); on the contrary, monsoon 
rainfall occurs due to the seasonal shift of winds created by the land’s annual temperature variation in contrast 
with the connected ocean surface (Alamgir 2009).  Further work is in progress to explore the variability of 
precipitation in time and space within the GBM and coastal Bangladesh to better understand annual riverbank 
erosion at the Bangladesh outlet.   

Fig. 3  Example of monsoon precipitation correlation for sub-
basin 45243 with all sub-basins. 

(b) 

(a) 

Fig. 4 (a) Correlation between pre-monsoon and monsoon 
precipitation.  (b) Significance test result showing only two 
sub-basins are significant. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

104 

References 

Alamgir, S., 2009: Characterization and estimation of rainfall in Bangladesh based on ground radar and satellite 
observations, Ph.D. Research Project, Institut National de la Recherche Scintifique, INRS-ETE, Universite 
du Quebec: Quebec City, CA.  

Ashouri, H., K. L. Hsu, S. Sorooshian,  D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson,  and O. P. 
Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for 
hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 69–83.  https://doi.org/10.1175/BAMS-D-
13-00068.1 

FAO, 2011: AQUASTAT transboundary river basins – Ganges-Brahmaputra-Meghna River Basin. Food and 
Agriculture Organization of the United Nations (FAO), Rome, Italy. 

Islam, A. S., A. Haque, and S. K. Bala, 2010: Hydrologic characteristics of floods in Ganges-Brahmaputra-
Meghna (GBM) delta. Nat. Hazards, 54, 797–811.  https://doi.org/10.1007/s11069-010-9504-y 

Katiraie-Boroujerdy, P. S., A. Akbari Asanjan, K.-lin Hsu, and S. Sorooshian, 2017: Intercomparison of 
PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. 
Res., 193, 36–49.  https://doi.org/10.1016/j.atmosres.2017.04.005 

Khalighi-Sigaroodi, S., E. Ghaljaee, A. Moghaddam Nia, A. Malekian, and F. Zhang, 2019: Evaluation of 
TRMM-3B42V7 and PERSIANN-CDR daily-precipitation products for the southern slopes of Alborz 
mountains, Iran. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W18, 1163–1167. 
https://doi.org/10.5194/isprs-archives-XLII-4-W18-1163-2019 

Kumar, V. P., and C. Venkateswara Naidu, 2020: Is pre-monsoon rainfall activity over India increasing in the 
recent era of global warming? Pure Appl. Geophys.  https://doi.org/10.1007/s00024-020-02471-7 

Lehner, B., and G. Grill, 2013: Global river hydrography and network routing: baseline data and new 
approaches to study the world's large river systems. Hydrol. Process., 27, 2171-2186. 

Mirza, M. M. Q., 2011: Climate change, flooding in South Asia and implications. Reg. Environ. Change, 11 
(SUPPL. 1), 95–107.  https://doi.org/10.1007/s10113-010-0184-7 

Mosaffa, H., M. Sadeghi, N. Hayatbini, V. A. Gorooh, A. A. Asanjan, P. Nguyen, and S. Sorooshian, 2020: 
Spatiotemporal variations of precipitation over Iran using the high-resolution and nearly four decades 
satellite-based PERSIANN-CDR dataset. Remote Sens., 12, 1–14.  https://doi.org/10.3390/rs12101584 

Nguyen, P., M. Ombadi, S. Sorooshian, K. Hsu, A. AghaKouchak, D. Braithwaite, H. Ashouri, and A. Rose 
Thorstensen, 2018: The PERSIANN family of global satellite precipitation data: A review and evaluation 
of products. Hydrol. Earth Syst. Sci., 22, 5801–5816.  https://doi.org/10.5194/hess-22-5801-2018 

Tan, M. L., P. W. Gassman, and A. P. Cracknell, 2017: Assessment of three long-term gridded climate products 
for hydro-climatic simulations in tropical river basins. Water (Switzerland), 9. 
https://doi.org/10.3390/w9030229 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
45th NOAA Annual Climate Diagnostics and Prediction Workshop  
Virtual Online, 20-22 October 2020 

______________ 
Correspondence to: Diego Pons, International Research Institute for Climate and Society (IRI), Columbia University, 
Palisades, NY;  E-mail: Diego.Pons@colostate.edu 

Connecting Agriculture Stress Index Systems at the Sub-National Level to  
the Next Generation of Seasonal Climate Forecasts:  

A General Approach to Transition from Monitoring to Forecasting 
Diego Pons,1 Ángel G. Muñoz,1 Lena Schubmann,2 Oscar Rojas,3 Tufa Dinku,1 

Carmen González Romero,1 Amanda Grossi,1 and Martin Leal4 
1International Research Institute for Climate and Society (IRI), Columbia University, Palisades, NY 

2UN World Food Program (WFP) Country Office Guatemala 
 3UN Food and Agriculture Organization (FAO), Rome, Italy 

4Climate Change Unit, Ministry of Agriculture, Livestock and Food, Guatemala 

1.  Introduction 

Agriculture for food production remains a major contributor to the national economies of many developing 
countries.  Often, these countries are characterized by agricultural landscapes that are heavily or even primarily 
dependent upon rainfall for crop irrigation and watering pastures for cattle.  In the face of climate variability 
and change, decision making processes at both the institutional and farm level are becoming more complex.  
Anticipating a potential agricultural drought and the associated impacts on food production could facilitate an 
informed risk management strategy in climate vulnerable agricultural landscapes.  Systems for monitoring 
vegetation stress around the world have been successfully implemented at different geographical scales and are 
used by leading global developmental and humanitarian agencies.  Yet, these systems could benefit from the 
incorporation of a combination of seasonal (3-9 months) and sub seasonal (2-6 weeks) forecasts, to transition 
from monitoring to a more proactive approach of forecasting agricultural droughts months in advance.  This 
approach can, in turn, inform risk management strategies at the farm and institutional level.  

The next generation of climate forecasts - hereinafter “NextGen" - developed by the International Research 
Institute for Climate and Society (IRI) and implemented by several National Meteorological Services around 
the world, opens new avenues for state of the art research and applied science that has the potential to transform 
policy making processes, and help local governments and developmental and humanitarian agencies achieve 
their goals (Fig. 1).  This research shows the advantages of using a pattern-based-calibrated, multi-model 
ensemble, derived from the North American Multi-Model Ensemble (NMME) to forecast vegetation stress at 

Fig. 1 The Receiver Operating Characteristic (ROC) values for the NextGen precipitation forecast initialized 
in Feb-May for the June-July-August season. 
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subnational level.  It also demonstrates how 
this approach (Model Output Statistics (MOS) 
using Canonical Correlations Analysis (CCA)) 
could be implemented by all the main 
agricultural monitoring systems worldwide 
based on the Normalized Difference 
Vegetation Index (NDVI).  This general 
approach could be used to transform the 
current agricultural stress monitoring systems 
from one of monitoring of agricultural tress to 
one incorporating forecasts at temporal and 
spatial scales relevant to smallholder farmers, 
governments and humanitarian and 
developmental agencies.  

2.  Methods 

We started this process by visiting the 
locations on the ground in Guatemala’s dry 
corridor (Fig. 2).  There, we worked with all 
the agricultural extension service agents to 
identify the current and historical crop allocation and agricultural calendars at the municipal level.  Noting the 
proper sowing and harvesting dates, we determined the phenological stages sensitive to changes in precipitation.  
We then evaluated the retrospective skill of the NNME-based NextGen for precipitation and temperature as 
predictors and several satellite derived vegetation indices as predictands (Table 1).  The training period for the 
cross validation is 1982-2010.  The goodness of fit was evaluated for each of the predictor predictand 
combinations using spatially averaged Kendall's Tau values.  We then used CCA to build linear regressions 
between combinations of EOFs in the predictor and the predictand that maximize the correlation among them, 
tending to decrease systematic biases in the mean, variance, and spatial distribution (Tippet and Barnston 2008).   
The canonical correlation analysis also implicitly works as a statistical downscaling method (Karamouz et al. 
2012), thus producing corrected fields at the same spatial resolution of the predictand field.  Hence, in this study 
CCA produced hindcasts at a resolution of 0.1° x 0.1°.  

Fig. 2 Example of crowdsourcing mapping of crops in the 
study region. 

Table 1  Kendall’s Tau values for each predictor predictand experiment 

3.  Results  

In this study we demonstrate the applicability of the NextGen to anticipate agricultural drought for the most 
relevant crop season and locations identified by farmers and extension service agents using crowdsourcing 
methods.  The Next Generation of Climate Forecast uses an integrated assessment of the forecast's capabilities 
to reproduce precipitation and temperature associated with hydrological supply and demand for ground level 
vegetation, expressed by multiple satellite-derived vegetation indices.  The results suggest that the NextGen 
system can be used to forecast agricultural drought up to four months in advance by producing a categorical 
and deterministic forecast of NDVI based on precipitation and temperature as predictors (Fig. 3).  This 
advancement in agricultural stress forecasting could help observing systems to move from monitoring 
vegetation stress to forecasting vegetation stress which in turn can help humanitarian and development agencies 
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to anticipate catastrophic agricultural droughts months in advance.  In addition, the study shows the advantages 
of incorporating local knowledge to overcome some of the current information gaps that kept these systems 
from providing relevant, timely information to small-holder agriculturalists at the sub-country level.  Overall, 
the NextGen approach using CCA as the MOS method could help institutions to determine potential predictors 
and predictands (e.g. precipitation and NDVI) in an objective and transparent manner at scales relevant for 
decision-making processes for farmers.   

(a) (b) 

(c) (d) 

Fig. 3  Reliability diagrams for (a) all categories, (b) above-normal, (c) normal, and (d) below-normal no-
noise seasonal midpoint NDVI (SMN) model forecast. The curves closer to the diagonal for the below-
normal (red) and above-normal (blue) NDVI categories suggest strong reliability for the model’s 
output based on precipitation and temperature from the multi-model ensemble for Guatemala’s dry 
corridor. 
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1. Introduction 

Atmospheric Rivers (ARs) are elongated plumes of intense water vapor transport that, upon landfall, can 
lead to extreme precipitation and wind events, particularly along the west coast of the United States (US). While 
these extreme events potentially bring destructive flooding (Waliser and Guan 2017), land-falling ARs are also 
beneficial, providing up to 50% of the water supply to the regions of the western US (Dettinger et al. 2011). As 
such, skillful prediction of ARs is desirable for the agriculture, energy production, water resource management, 
and insurance sectors. During recent years, studies have shown that anomalous AR activity can be linked to 
tropical interactions between the Quasi-biennial Oscillation (QBO) and the Madden Julian Oscillation (MJO), 
the latter of which triggers Rossby wave trains to the extratropical Northern Hemisphere. In particular, MJO-
related convection tends to be enhanced and more predictable when the tropical stratospheric QBO winds are 
easterly (Yoo and Son 2016; Son et al. 2017). The opposite is true during the westerly QBO phase. Baggett et 
al. (2017) note that AR activity lags particular MJO phases by ~ 4 weeks and the sign of that activity is related 
to the QBO phase. 

Here, we present an empirical tool that predicts the probability of anomalous AR based on the initial states 
of the MJO and QBO. The model was developed at Colorado State University, and, having demonstrated skillful 
prediction of historical AR activity, has been operating in real-time at the Climate Prediction Center (CPC) 
since August 2019. Results of the first year of real-time probabilistic AR forecasts are presented for both the 
Days 8-14 and Weeks 3-4 outlooks. 

2.  Empirical model 

ARs are detected using the Mundhenk et al. (2016) algorithm, which defines ARs as features that have at 
least the following two characteristics: 1) vertically integrated water vapor transport (IVT) exceeding the 94th 
percentile of the all season distribution of IVT values over the North Pacific, and 2) length greater than 2000 
km and a length-to-width ratio of 1.4. The prediction of anomalous AR activity is based on the empirical model 
documented in Mundhenk et al. (2018) using a methodology similar to Johnson et al. (2014). The empirical 
model relies on the following two predictors: 1) the phase of the QBO (easterly and westerly), and 2) the phase 
of the MJO (8 active phases and 1 inactive phase) to predict anomalous AR activity. Forecasts are made in a 
two-category (above/below median) system. 

The original model outlined in Mundhenk et al. (2018) provided winter (December-March) forecasts for 
the west coast of the contiguous US (CONUS) and the southern coast of Alaska. Cross-validated analysis 
demonstrated that the empirical model outperformed ECMWF predictions of anomalous AR activity at weeks 
2-5. As part of the transition to CPC experimental operations, the empirical AR model has been expanded to 
provide forecasts for all seasons across all of CONUS and Alaska.  

3.  Skill of one year of real-time AR forecasts 

Figure 1 (left panel) shows the Heidke Skill Scores (HSS) for daily forecasts of Day 8 - 14 AR activity 
using the empirical model over the period August 1, 2019 - July 31, 2020.  The average HSS across this period 
is -1.28, suggesting the average skill of AR forecasts across the US was slightly lower than that of random 
chance. However, the spatially aggregated skill score may mask regions of skillful forecasts. The right panel of 
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Fig. 1 shows the percentage of hits relative to the number of forecasts at each grid point. Spatially, the model 
performs slightly better than chance (more than 50% of forecasts are hits) along southern Alaska and along the 
Gulf Coast but less so along the west coast, a notable region of AR activity. The empirical model, however, 
was able to capture the May 16-19, 2020 AR events that occurred along the west coast and in the Midwest 
where more than 7 in of rain fell in parts of Michigan (not shown).   

Figure 2 shows the same set of analyses as in Fig. 1 but for the Week 3-4 forecasts of AR activity.  The 
average HSS across the 2019-2020 period is 8.55 (Fig. 2, left), suggesting that the empirical model provides 
slightly more skillful AR forecasts than random chance, with the greatest percentage of hits across throughout 
the south and east but also along the Pacific Northwest coast and southwestern Alaska (Fig. 2, right). Relative 
to the Day 8-14 forecasts, the model is able to better predict AR activity along the west coast including the AR 
event along Washington and Oregon that occurred in late January/early February 2020.     

4.  Future work 

The first year of real-time empirical AR forecasts demonstrates the potential for skillful AR prediction at 
the Week 3-4 timescale. Given the low skill of Day 8-14 AR forecasts, the empirical model may provide skillful 
forecasts of anomalous AR activity under specific MJO and QBO conditions during this outlook period. Several 
improvements to the empirical model are planned. First the QBO will be further classified to three categories 
to more accurately represent neutral conditions as well as easterly and westerly phases. Furthermore, the 
detection algorithm of the AR activity will be modified to account for the distribution of IVT in the Atlantic as 
well as the Pacific. 
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ABSTRACT 

Marine heat waves (MHWs) are characterized by persistent anomalously warm sea surface temperatures 
(SSTAs) and are associated with large anomalies in other environmental variables. However, the processes 
that create MHWs are still not well understood. We investigated 15 warm SSTA events in the eastern North 
Pacific (ENP) during 1970-2020 to characterize the spatial and temporal anomaly patterns prior to and 
during warm events and to identify the dynamical processes that led to these warm events. We found that 
ENP warm events are strongly associated with: (a) anomalous sea level pressure dipoles and corresponding 
negative wind speed anomalies in the ENP; (b) oceanic and atmospheric anomalies in the tropical Indian 
Ocean - central tropical Pacific region; and (c) anomalous extratropical tropospheric wave trains that 
teleconnect the tropics to the ENP. Multidecadal trends in SLP in the ENP have also contributed to ENP 
warm events. These results indicate the ENP warm events, and associated anomalies in the ENP and western 
North America region, may be predictable at subseasonal to seasonal lead times. 

1. Introduction 

 Marine heat waves (MHWs) are anomalous events in which prolonged extreme positive sea surface 
temperature anomalies (SSTAs) occur. These extreme sea surface temperatures (SSTs) have become stronger 
and more common around the world in the last few decades (e.g., Holbrook et al. 2019; Hayashida et al. 2020; 
Laufkötter et al. 2020; Sen Gupta et al. 2020). MHWs have major impacts on weather, climate, marine 
ecosystems, and fisheries (e.g., Amaya et al. 2016; Rogers-Bennett and Catton 2019; Smale et al. 2019; 
Holbrook et al. 2020). Many prior studies have focused on individual events in specific seasons, especially in 
winter (e.g., Bond et al. 2015; Amaya et al. 2016; Rodrigues et al. 2019; Amaya et al. 2020; Dzwonkowski et 

Fig. 1 Composite SSTAs (℃) for the (a) 15 warmest events and (b) the 15 coolest events during May-Sep 
1970-2020. Black box shows our focus region within the ENP (43-53°N, 215-228°E). This box 
encompasses the largest magnitude SSTAs for both ENP warm events and cool events. 
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al. 2020). However, few studies have 
attempted to characterize multiple 
events occurring in specific regions or 
in multiple seasons (e.g., Namias et al. 
1988; Laufkötter et al. 2020).   

We analyzed 15 periods of 
anomalously warm SSTs in the eastern 
North Pacific (ENP) during 1970-2020, 
with a focus on the spring and summer 
anomalies. These 15 warm events have 
many of the features identified in recent 
studies of MHWs in the ENP (e.g., 
Bond et al. 2015, Amaya et al. 2020). 
These recent MHWs are included in the 
15 warm events. We also analyzed a 
corresponding set of 15 cool events in 
the ENP to better understand the 
processes driving both warm and cool 
events. We focused on an ENP box in 
which both positive and negative 
SSTAs tended to have the greatest magnitudes (Fig. 1), and on the extended summer period (May-Sep) when 
these magnitudes tended to be greatest. We examined both regional and global anomalies to characterize the 
set of processes that lead to warm and cool events. 

Our main research questions were: 
1. What regional and global scale atmospheric-oceanic processes generate extreme SSTAs in the eastern 

North Pacific? 
2. How are these extreme SSTAs related to known tropical climate variations, such as El Niño-La Niña? 
3. How are these extreme SSTAs related to multidecadal climate change? 

2.  Data and methods 

Our main data were monthly mean values for 1970-2020 at a 2.5-degree resolution from the NCEP/NCAR 
Reanalysis (R1; Kalnay et al. 1996). We chose R1 to allow us to work with a larger number of years than 
available in more recent reanalyses. We defined warm (cool) events as the 15 May-Sep periods in which the 

Fig. 2. Detrended SST anomalies (SSTAs; ℃) for May-Sep 1970-2020 
in the ENP box. Warm (cool) events are identified by the red (blue) 
shading. 

Fig. 3. Sea level pressure anomalies (SLPAs; mb) in warm event years: (a) May-Sep and (b) Mar-May. 
Implied surface wind anomalies are shown schematically by the black arrows. 
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detrended SSTAs in the ENP box were warmest (coolest; Fig. 2). We conducted a range of statistical and 
dynamical analyses of oceanic and atmospheric variables to identify spatial and temporal anomaly patterns, and 
dynamical processes associated with the 
development and decay of warm and cool 
events in the ENP. For brevity, we only 
focus on warm events in this summary.  

3.  Results 

3.1  Regional and global processes 

Figure 3a shows the composite sea 
level pressure anomalies (SLPAs) for May-
Sep of warm event years. The main pattern 
is a SLPA dipole, with a positive anomaly 
over much of the Gulf of Alaska and a 
negative anomaly centered near 30°N, 
210°E. The surface wind anomalies 
indicated by the SLPA dipole are generally 
westward between the dipole centers and 
opposed to the long term mean eastward 
flow in May-Sep (Peixoto and Oort 1992). 
Thus, over and to the west of the ENP box, 
the wind speed anomalies (WSAs) during 
these periods tend to be negative and 
favorable for (a) anomalously weak 
sensible and latent heat fluxes from the 
ocean, and (b) reduced wind driven ocean 
mixing, all of which are favorable for the 
development of positive SSTAs. Figure 3b 
shows the SLPAs in Mar-May of warm 
event years. A SLPA dipole also occurs in 
Mar-May, with a positive pole centered in 
the northern Gulf of Alaska and a negative 
pole centered south of the Aleutian Islands 
at about 45°N.  The Mar-May dipole is 
substantially stronger than the May-Sep 
SLPA dipole, with implied surface wind 
anomalies that are generally westward and 
opposed to the long term mean eastward 
winds in Mar-May (Peixoto and Oort 
1992). The Mar-May SLPA dipole 
indicates negative WSAs over and to the 
west and east of the ENP box that are 
favorable for the development of positive 
SSTAs. The spring SLPA dipole and 
WSAs are much stronger than those in the 
summer and winter (not shown), indicating 
that spring SLPAs and wind speed 
anomalies play a large role in developing 
the peak SSTAs that occur during summer 
(Fig. 1a). These SLPA dipoles are similar 
to the SLPA patterns associated with the 
North Pacific Oscillation (NPO; e.g., 

Fig. 4. Seasonal mean SSTAs (oC, black bars) and WSAs (m/s, 
gray bars) in the ENP box during years with warm events. 

Fig. 5. ENP anomalies in the spring of warm event years: SSTAs 
(lower panel), SLPAs (middle panel), and 200 mb eddy 
geopotential height anomalies (ZA200, upper panel). Black 
schematic arrows represent the anomalous winds. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

116 

Walker and Bliss 1932; Rogers 1981; 
Pegion and Selman 2017), to those 
identified by Namias et al. (1988), and 
to those associated with the 2019 MHW 
(e.g., Amaya et al. 2020).  

Figure 4 shows the seasonal 
evolution of SSTAs and surface WSAs 
during years with warm events. The 
SSTAs during these years tend to be 
most positive in the summer (Jun-Aug) 
but are positive in all four seasons. The 
WSAs tend to be most negative in the 
spring (Mar-May) but are negative in all 
the seasons except Dec-Feb, when they 
are weakly positive. Thus, the WSAs 
are supportive of positive SSTAs in all 
seasons except Dec-Feb. The most 
negative WSAs in Mar-May 
immediately precede the most positive 
SSTAs in Jun-Aug, indicating that the 
spring WSAs may play a large role in 
creating the summer SSTAs. Cool 
events have roughly opposite 
anomalies, with: (1) negative SSTAs in 
all four seasons but most negative in 
summer; and (2) positive WSAs in all 
seasons except Dec-Feb and the most 
positive WSAs in spring (not shown).  

The ENP SSTAs, SLPAs, surface 
WSAs, and 200 hPa eddy geopotential 
height anomalies (ZA200) during Mar-
May of warm event years are shown in Fig. 5. Note the ZA200 dipole that matches and overlies the SLPA 
dipole, with northwestward wind anomalies at both levels.  Similar matching dipoles occur in the corresponding 
geopotential height anomalies at intervening tropospheric levels (not shown). This approximate stacking of 
anomalous dipoles indicates that a tropospheric-deep set circulation of anomalies in the ENP in the spring 
contributes to the development of warm events in the ENP. Similar but weaker SSTA, SLPA, and ZA200 
patterns occur in May-Sep (see for example Figs. 1, 3 for SSTA and SLPA; ZA200 for May-Sep not shown), 
and opposite anomalies occur in the spring and summer of cool event years (not shown). 

The global tropical and northern hemisphere eddy geopotential height anomalies for Mar-May of warm 
event years are shown in Fig. 6. Note from these height anomalies that the spring ENP ZA200 and SLPA dipoles 
(Fig. 5) are part of: (1) an extratropical zonally oriented anomalous wave train spanning the northern hemisphere; 
and (2) an arcing wave train extending from the central tropical Pacific to North America and the North Atlantic. 
The negative (positive) height anomalies spanning the equator in the Indian Ocean sector (central tropical 
Pacific) are consistent with anomalously weak (strong) tropospheric convection centered near the maritime 
continent (central tropical Pacific) (cf. Matsuno 1966; Gill 1980). The blue (red) oval in Fig. 6 shows the 
location of pronounced positive (negative) outgoing longwave radiation anomalies in Mar-May of warm event 
years (not shown), consistent with the locations indicated by the height anomalies themselves. The locations of 
the tropical convective anomalies with respect to the height anomalies indicate that the wave trains into the 
ENP are likely triggered by the convective anomalies (cf. Sardeshmukh and Hoskins 1988).  

Fig. 6. 200 mb eddy geopotential height anomalies (dam) in Mar-May 
of warm event years. Blue (red) oval shows the locations of 
anomalously weak (strong) tropical tropospheric convection 
determined from the corresponding outgoing longwave radiation 
anomalies (not shown). 

Fig. 7. Correlation of July SSTs in ENP box (black) with prior Mar-May 
SSTs in the Indo-Pacific region for 1970-2020. The dashed (solid) 
oval marks negative (positive) correlation areas that are broadly 
consistent with the negative (positive) tropical convective anomaly 
areas in Fig. 6. 
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The indications of tropical 
convective anomalies led us to analyze 
the corresponding SST anomalies, 
including the correlation between ENP 
SST and tropical SST.  Fig. 7 shows the 
correlation between the July ENP SST 
and the SST throughout much of the 
Indo-Pacific region. Correlation 
magnitudes of 0.24 or greater are 
significant at the 95% level or greater. 
The area of negative (positive) 
correlation in the tropical western North 
Pacific (central tropical Pacific) is 
consistent with the indications of 
negative (positive) convective 
anomalies shown in Fig. 6. This 
indicates that: (1) the negative 
(positive) convective anomalies are 
likely initiated by negative (positive) 
SSTAs; and (2) tropical oceanic and 
atmospheric anomalies in the spring are 
important in triggering teleconnection 
processes that lead to the ENP SLPA 
dipoles and WSAs in the spring and 
summer, which in turn lead to ENP 
warm events.  

A schematic illustration of the 
teleconnections between the tropics and 
the ENP during Mar-May of warm 
events is shown in Fig. 8. In these 
teleconnections, anomalous tropical 
SSTAs and convection in the southeast 
Asian - western North Pacific and 
central tropical Pacific trigger two wave 
trains in the northern hemisphere that 
constructively interfere with each other 
over the ENP. There they produce 
anomalous dipole circulations 
throughout the troposphere.  The 
negative surface wind speed anomalies 
associated with the surface dipole in the 
ENP (Figs. 3, 5) lead to anomalously 
weak surface heat fluxes from the ocean 
and reduced mixing within the upper 
ocean, which then lead to positive SSTAs and warm events in the ENP.  

3.2  Connections to climate change 

 Figure 9 shows that Mar-May ENP wind speeds and SSTs have experienced large multidecadal trends 
during 1970-2020: (1) a decrease in wind speeds of 2.05 m/s (37.7%) in the last 51 years; and (2) a decrease in 
SST of 0.86°C (6.9%) in the last 51 years. Figure 10 shows that in this 51-year period, spring-summer SLP in 
the ENP changed substantially in ways that made SLPA dipole conditions more common and intense, leading 
to lower wind speeds across much of the ENP. This figure shows the difference between the most recent 20 

Fig. 8. Schematic of the large scale tropical and extratropical anomalies 
during Mar-May that lead to ENP warm events. Negative (positive) 
SST and convection anomalies shown by blue (red) column. 
Negative (positive) upper tropospheric height anomalies shown by 
blue (red) shading.  Black schematic arrows represent the implied 
anomalous winds over the ENP. White arrow indicates the perturbed 
upper tropospheric flow. 

Fig. 9  (a) ENP 1000 mb wind speed (m/s) for Mar-May 1970-2020; (b) 
ENP SST (℃) for May-Sep 1970-2020. Red dashed lines show 
trends for the full period. 
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years and the first 20 years of our 1970-
2020 study period and reveals a 
difference dipole that indicates 
weakened wind speeds in and well to 
the west of the ENP box.  These results 
help explain the long-term trends in 
wind speeds and SST shown in Fig. 9 
and indicate that multidecadal climate 
change has contributed to an increase in 
the frequency, intensity, and duration of 
warm events over the last 50 years 
(Figs. 2, 9b).  

6.  Conclusions 

We have found that ENP warm 
events, including recent MHWs, are a result of complex interactions between: (1) anomalous atmospheric 
forcing of the ENP; (2) tropical SSTs and convective anomalies that are teleconnected to the ENP; and (3) 
interannual variations and multidecadal climate change processes. The regional and global anomalies for warm 
events are generally opposite than those for cool events (not shown). Warm events tend to alternate 
interannually with cool events. Both types of events have become more extreme since 1970. Warm events and 
cool events do not appear to be strongly related to El Niño/La Niña (not shown). However, El Niño (La Niña) 
Modoki may play a role in initiating tropical SST and convective anomalies that lead to warm (cool) events 
(note the similarities to Modoki patterns in Fig. 5). Climate change seems to have contributed to an ENP SLPA 
dipole, leading to a multidecadal decrease in ENP wind speeds and increase in ENP SSTs. We did not focus on 
the impacts of ENP events on North American climate, however, our study suggests that precursor events that 
initiate the development of MHWs appear to create a southward shift in Pacific storm tracks as well as other 
precipitation patterns (not shown). In on-going research, we are investigating: (1) methods for monitoring ENP 
warm and cool events; (2) the use of predictors in the tropical Indo-Pacific region to predict ENP warm and 
cool events at subseasonal to seasonal lead times; and (3) the atmospheric-oceanic dynamics in the ENP 
associated with the development of warm and cool events. 
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ABSTRACT 

Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received 
considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in 
summer (June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential 
height rise, has been identified as an essential contributor to September sea ice loss, in both observations and 
the CESM1 Large Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to 
remote sea surface temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five 
available large “initial condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control 
simulations to show that the same atmospheric process, resembling the observed one and the one found in the 
CESM-LE, also dominates internal sea ice variability in summer on interannual to interdecadal time scales in 
preindustrial, historical, and future scenarios, regardless of the modeling environment. However, all models 
exhibit limitations in replicating the magnitude of the observed local atmosphere–sea ice coupling and its 
sensitivity to remote tropical SST variability in the past four decades (Fig. 1). These biases call for caution in 
the interpretation of existing models’ simulations and fresh thinking about models’ credibility in simulating 
interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying 
the causes of these model limitations may provide implications for alleviating the biases and improving 
interannual- and decadal-time-scale sea ice prediction and future sea ice projection. 

This study has been published in the Journal of Climate in 2020.  
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Fig. 1  Linear correlation of: (a) JJA Z200, (b) zonal mean geopotential height and (c) zonal mean temperature 
with September total sea ice area (SIA) index in ERA-I reanalysis for 1979-2012 (contoured values are 
significant at 95% confidence level). Correlation of (d) JJA Z200, (e) zonal mean geopotential height and 
(f) zonal mean temperature with September SIA index for 1979-2012 averaged over 4 single-model initial 
condition large ensembles’ (SMILE) historical+RCP8.5 runs (correlations are computed as the mean 
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(denoted with < >) of the 4 correlation maps (excluding CSIRO-LE), each of which is constructed as first 
computing correlation in each of the members of a given SMILE and then averaging over the whole given 
SMILE). Correlation of (g) JJA Z200, (h) zonal mean geopotential height and (i) zonal mean temperature 
with September SIA index for 1979-2012 averaged (denoted with < >) over 31 CMIP5 models’ 
historical+RCP8.5 runs (correlations are first computed in each of 31 models then the 31 correlation 
patterns are averaged to construct a 31-member multi-model ensemble). Contours on (d)-(i) do not represent 
significance as we do not account for the significance of the averaged correlation maps. Also shown: (j) 
correlation of Arctic area averaged (60-90°N; 0-359°E) JJA Z200 and September SIA index in CMIP5 and 
each of the members of the 5 SMILE simulations: the whiskers extend to 1.5×interquartile range (IQR). 
Crosses mark average values, plus signs mark the outliers (outside 1.5×IQR). The median is indicated with 
orange horizontal line. The red dashed line indicates the ERA-I correlation value (r = –0.58). All variables 
are linearly detrended before calculating correlations. The figure is adopted from (Topál et al. 2020, Fig. 
3). 
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1. Introduction 

Extratropical storm activities have strong societal and economic impacts on mid- and high-latitude regions, 
including Alaska. To support the NWS Alaska and other regional centers for storm track monitoring and 
forecast products, a suite of week-2 storm track forecast products has been developed at the NOAA Climate 
Prediction Center (CPC) based on the dynamical forecast of the NCEP Global Ensemble Forecast System 
(GEFS).   

In this project, extratropical storms are detected and tracked using 6-hourly sea level pressure (SLP) data 
from the real-time GEFS 16-day forecasts and a storm-tracking algorithm developed by Serreze (1995). The 
week-2 outlooks include storm tracks and track density, storm intensity and duration, and corresponding 
precipitation, SLP and 10-m wind over North Western-Hemisphere including Alaska/Arctic, North Pacific, 
North America, and North Atlantic, derived from the GEFS week-2 forecasts for both total and anomaly fields. 
In addition, GEFS week-2 probabilistic forecasts of precipitation and 10-m wind exceeding 75% and 90% 
percentiles, and storm intensity lower than 990, 980, 970, and 960 hPa are also provided. Verifications for the 
real-time week-2 forecasts are also conducted using the NCEP Climate Forecast System Reanalysis (CFSR).  
The week-2 storminess outlook is updated on a daily basis. 

2.  Data and methodology 

2.1  Data 

The week-2 storm track outlook is based on the GEFS 16-day, 6-hourly dynamic forecast on a 2.5o × 2.5o 
(lat × lon) grid. The outlook was upgraded from the GEFSv11 based (80 ensemble members) to the GEFSv12 
based (124 ensemble members) in September 2020. The variables used include SLP, precipitation, and 10-m 
wind. The 21-year (1999-2019) GEFS hindcast dataset was utilized to derive model climatology and assess the 
forecast skill. The CFSR data are used as observations for the forecast verification and skill assessment.   
2.2  Methodology 

The week-2 storm detecting and tracking are based on the algorithm developed by Serreze (1995), with the 
following criteria:  

• Using 6-hourly SLP data on the 2.5o × 2.5o grid 
• Storm center SLP ≤ 1000 hPa 
• Storm center SLP at least 1 hPa lower than surrounding grid points 
• Maximum distance a storm can move is 800 km/6 hour 

Storm track density is defined as total number of storm centers in a 2.5o × 2.5o grid box divided by total ensemble 
members. Storm intensity (center SLP) denotes the mean center pressure of storm centers in a 2.5o × 2.5o grid 
box. Storm duration is the mean lifetime of storms passing through a 2.5o × 2.5o grid box. The forecast tool is 
assessed using the 21-year (1999-2019) GEFS hindcast data.  The forecast skill is determined by the anomaly 
correlation (AC) between the forecasts and the CFSR during the GEFS hindcast period.  
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3.  Week-2 storm track outlook, CFSR verification and evaluation 

The week-2 forecast products consist of storm tracks, storm track density, storm intensity and duration, 
weekly total precipitation, mean SLP and 10-m wind, for both total and anomaly fields. The week-2 outlook 
also includes probabilistic forecasts for precipitation and 10-m wind exceeding 75% and 90% percentiles, and 
storm intensity lower than 990, 980, 970, and 960 hPa. Sub-regional maps for Alaska/Arctic, North Pacific, 
North America, and North Atlantic are also provided. The week-2 forecast products are available on the real-
time forecast website, with a daily update: https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/ 

Figure 1 shows an example of the week-2 forecast issued on January 20, 2021, for the 7 days from January 
27 to February 3, 2021, including storm tracks, storm track density, storm intensity and duration. The left panels 
in Fig. 1a are the total fields and that in Fig. 1b the anomaly fields. Forecasts for other variables, as well as the 
sub-regional maps can be found in the forecast webpage.  

The verification of the week-2 forecast against the CFSR is done when the CFSR data are available for the 
forecast target week. Therefore, there is a 16-day delay for the real-time verification. Figures 1a and 1b in right 
panels show the verification of the model forecasts in the left panels. 

Figures 2–3 display the AC skills of week-2 storm track density, precipitation, and sea-level pressure, 
between the GEFSv12 hindcasts and CFSR over the 21-year (1999–2019) hindcast period,  respectively,  for 

  Fig. 1a  Verification (right) of GEFSv12 week-2 forecast (left) for storm tracks, track density, storm intensity and 
duration with total fields.  The forecasts were issued on January 20, 2021 for week-2 from January 27 to February 
3, 2021. 

https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/
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Fig. 1b   Same as Fig. 2a but with anomaly fields.   

    -0.1      0        0.1     0.2     0.3      0.4      0.5      0.6      0.7 
Fig. 2. Anomaly correlation of week-2 storm track density between the GEFSv12 hindcasts and CFSR over the 21-

year (1999–2019) hindcast period for May (left) and October (right). 

  -0.2    -0.1      0.1      0.2     0.3      0.4     0.5     0.6      0.7 

Fig. 3  Anomaly correlation of week-2 sea level pressure (top row) and precipitation (bottom row) between the 
GEFSv12 hindcasts and CFSR over the 21-year hindcast period for May (left) and October (right). 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

126 

May and October. The results indicate a certain level of skills for the week-2 storm track density over the mid- 
and high-latitudes (Fig. 2).  The week-2 forecasts of precipitation and SLP (Fig. 3) show higher AC skills than 
the week-2 storm track forecasts in both May and October.     

Conclusion 

A real-time GEFS-based week-2 storminess outlook tool was developed at the NOAA CPC, with a daily 
update and the CFSR verification. Anomaly correlations of week-2 storm track density, precipitation and SLP 
between GEFSv12 21-year hindcast and CFSR data indicate a certain level of skills for week-2 storm track 
density over the mid- and high-latitudes and better skills for week-2 precipitation and SLP. A mean bias 
correction method is being developed to improve the week-2 forecast.  Future work includes extending the 
target period to week 3/4 and exploring use of a multi-model ensemble with GEFS and the Climate Forecast 
System (CFS). 
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Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 

33, 1–23.  



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
45th NOAA Annual Climate Diagnostics and Prediction Workshop  
Virtual Online, 20-22 October 2020 

______________ 
Correspondence to: Anastasia Makhnykina, Laboratory of Ecosystem Biogeochemistry, Institute of Ecology and 
Geography, Siberian Federal University, Krasnoyarsk 660041, Russia;  E-mail: amakhnykina@sfu-kras.ru 

Soil CO2 Emission Response to the Main Limiting Factors Changes 
During the Snow-free Period in Central Siberia  

Anastasia Makhnykina,1, 2 Anatoly Prokushkin,2, 1 Daria Polosukhina,2, 1 and Eugene Vaganov1  
1Laboratory of Ecosystem Biogeochemistry, Institute of Ecology and Geography, Siberian Federal University, 

Krasnoyarsk 660041, Russia 
2Laboratory of Biogeochemical Cycles in the Forest Ecosystems, V.N. Sukachev Institute of forest, 

Krasnoyarsk 660036, Russia 

ABSTRACT 

The response of soils in the boreal zone to current climate change is important for assessing the carbon 
sink efficiency of the forest ecosystems and the future concentration of CO2 in the atmosphere. In this work, 
we examined the influence of two main limiting factors – the moisture conditions and the amount of 
available nitrogen in the soil on the seasonal dynamics of soil emission in the middle taiga ecosystems of 
Central Siberia. In the course of the study, it was found that adaptation to a sharp change in moisture 
conditions is long-term and stable - inhibition of the rate of soil emission is often observed. The influence 
of various nitrogen concentrations during the summer period is secondary in relation to seasonal climatic 
conditions. However, at the end of the season, when there is a decrease in precipitation and a decrease in 
temperature, the contribution of nitrogen leads to an increase in soil emission. 

1. Introduction 

 The soils of the boreal forests contain enormous reserves of carbon, which are 4 times higher than those 
concentrated in the aboveground phytomass (Mukhortova et al. 2015). As the temperature warms, the growth 
and rate of soil emission are predicted (IPCC 2007); however, it is known that, on a seasonal scale, other factors 
of various origins also influence the formation of the CO2 flux (Davidson and Janssens 2006). A lot of studies 
to date have focused on the temperature sensitivity of soil respiration (Lloyd and Taylor 1994; Boone et al. 
1998; Buchmann 2000). However, in contrast to the constant response of soil respiration (Rs) to the temperature 
usually observed in ecosystems with sufficient water supply, a growing number of studies indicate that soil 
respiration in ecosystems experiencing water shortage has an impulse response to rainfall (Yuste et al. 2003; 
Jarvis et al. 2007). Soil moisture can affect Rs in a non-linear (parabolic) manner, limiting root and microbial 
activity in the soil at low soil moisture levels and limiting the CO2 diffusion coefficient at high soil moisture 
levels (Orchard and Cook 1983; Maier et al. 2010). But the effect of soil moisture is often only found in field 
studies that record soil moisture levels low enough to constrain Rs, or when Rs measurements are frequent 
enough to distinguish rapid Rs responses to fluctuations in soil moisture (Reichstein et al. 2005).  

Another important agent to modify the soil respiration rates is soil nutrients supply (Lu et al. 2009; Zhang 
et al. 2014). Due to anthropogenic activities, global N cycling has also been significantly altered. Analyses have 
revealed that N addition can increase aboveground and belowground plant growth by 29% and 35.5%, 
respectively. Additionally, N addition reduced microbial biomass by 20% at the global scale (Liu and Greaver 
2010). However, the conclusions mentioned above are largely dependent on N-limited regions as the boreal 
forest is.   

Large uncertainties exist in terms of belowground C cycling because soil C dynamics are often regulated 
by complicated microbial processes. Changes in precipitation and N availability and associated feedbacks from 
terrestrial ecosystems are expected to have profound effects on global C cycling. Boreal ecosystems are 
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inevitably more sensitive to these changes because they are co-limited by both water and N availability (Yan et 
al. 2011). 

In our study, we aimed to determine the importance of precipitation and nitrogen supply changes on the 
soil CO2 emission in the middle taiga ecosystems in Central Siberia. We hypothesized that: (1) elevated 
moisture stimulates respiration rates while suppressing these processes at the sites with drier conditions; (2) 
increased soil nitrogen stimulates CO2 efflux during the snow-free season; and (3) precipitation conditions are 
the more significant factor than nitrogen input for enhanced emission during the summer season. 

2.  Materials and methods 

The study area was located in the Turukhansk region of the Krasnoyarsk Territory (60°47'57.3''N, 89° 
21'22.7''E), Russia. The climate of the region is sharply continental. According to long-term measurements 
obtained at the Bor meteorological station (http://www.meteo.ru), the average annual air temperature is -3.5°С. 
The sum of temperatures above 10°C is 800–1200°C. The absolute minimum air temperature is -54°C, the 
absolute maximum temperature is +36°C. The amplitude of fluctuations in average monthly temperatures can 
reach 42°C. The average annual relative humidity is 76%. The amount of atmospheric precipitation per year 
averages 590 mm. Their maximum precipitation occurs in July – August (Pleshikov 2002). 

Study plots were represented by the lichen pine forest (10P) and selected on a geomorphologically 
homogeneous surface (hilltop). Soils of the study region have been formed on glaciofluvial deposits and feature 
the predominance of sand in the upper part of the profile.  Clayey horizons (lenses) are usually noted at depths 
over 1 m.  Soils cover are illuvial– ferrous podzols with a small depth of the organic horizon. According to the 
World Reference Base (WRB) soil classification system, the soils of the experimental plots are Podzols.  Carbon 
stocks in soils of forest biogeocenoses are relatively small and constitute, according to our estimates, about 4 
kg C m-2 in a 2-m deep layer.  The organic horizon contains over 30% of the total soil organic matter (OM) 
(Polosukhina and Prokushkin 2017).  The root phytomass constitutes 30–60% of the soil organic matter; the 
detritus content is about 10%.  

2.1 Experimental design and treatments 

All experimental work was carried out during a snow-free period from June to September. The influence 
of the differentiated amount of precipitation was considered for five levels of moisture, four of which were 
determined as a % of the passing atmospheric precipitation (rain) - 0, 25, 50, and 100% from the amount of 
precipitation, and the fifth level is the optimal soil moisture (Makhnykina et al. 2020) for these ecosystems 
(SWC = 0.30 m3 m-3 or 30%). This experiment was made during three summer seasons – 2015, 2016, and 2018. 
The wooden greenhouses 3*1 m2 were installed in May 2015. In each of them, we put three plastic PVC collars 
to measure soil CO2 emission. The flux measurements were carried out after each rain event during the summer 
season, in 8 hours after adding different amounts of water at each experimental site. For the site with permanent 
soil moisture condition in 30%, we maintained a moisture level during the whole season.  

Nitrogen was applied once a year at the beginning of the measurement period (on 18th of June) in liquid 
form (ammonium nitrate - NH4NO3) at the beginning of the season of 2019. A wide range of N concentration 
– 0, 1, 2, 4, 8, 15, 20, 50, 100, and 150 kg N ha-1 was chosen as replicates, which made it possible to take into 
account changes in emission even with a small increase in the nitrogen concentration in the soil (Lu et al., 2009; 
Zhang et al. 2014). At the sample plot, which was 4*5 m2, we determine the three types of ground cover: with 
lichen, without lichen, without ground cover with 2 measuring collars for each treatment. The frequency of 
measurements during the season was: 1st, 3rd, 5th, 10th, 14th, and later once a week until the end of the season 
(last measurement – 15th September). 

Field measurements 

Soil emission measurements were carried out using an LI-8100A infrared gas analyzer (Li-cor Inc., Lincoln, 
USA). Soil temperature measurements (at a depth of 5, 10, and 15 cm) were carried out using a Soil Temperature 
Probe Type E (Omega, USA); to measure the volumetric soil moisture SWC (at a depth of 5 cm from the 
mineral soil surface), a Theta Probe moisture meter was used Model ML (Delta T Devices Ltd., UK). 
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Temperature sensitivity 

The temperature sensitivity (Q10 
coefficient) for different precipitation 
levels was estimated using the Van’t 
Hoff equation (Van’t Hoff 1899): 
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where R1 and R2 – the soil emission 
rates for the temperature T1 and T2. The 
temperature range corresponds to the 
different parts of the measurement 
period but always represents the 
changes in flux rate with temperature 
increasing by 10 degrees. 

3.  Results 

The results of the experiments 
showed that the maximum influence of 
the factors is manifested at different 
intervals of the growing seasons.   
3.1 Water response 

The experimental sites as the 
experimental seasons showed huge 
differences in the emission response.  
As the 2015 season was the most 
precipitated one (data from the source 
http://www.meteo.ru) the max CO2 efflux (Fig. 1) observed at the site with the lowest amount of precipitation 
– 0% site. The efflux on average was 43 ±3% higher compared to our treatments and the highest soil CO2 
emission efflux detected in August (0.27 kg C m-2).  

The next season – 2016 was the driest with a water deficit of 24% compared to the mean meteorological 
values. And as was expected the results of the flux measurements demonstrated the opposite effect. The rate of 
soil efflux during the season was increasing just when the moisture was getting closer to the optimal value. 
Usually, this condition holds on the site with permanent water conditions in 30% SWC.  

In 2018 the weather conditions were quite close to the mean values and we assume this year as a reference 
in our study. The maximum intensity of soil emission was recorded in the area with 50% of atmospheric 
precipitation and in the area with a constant soil moisture content of 30% (Fig. 1), which averaged 3.5 ±0.3 
µmol С-СО2 m-2 s-1. Peak emission values (up to 11 µmol С-СО2 m-2 s-1 in the area with a constant humidity of 
30%) fall at the end of June and the second half of August. The minimum emission values were noted in the 
area with a complete lack of moisture during the season (0%), due to the high water stress during the season. 
However, in this area, there is also a strong dependence of the flux on soil moisture (Makhnykina et al., 2020), 
which is a direct manifestation of the stress response to drought and the rapid response of the emission intensity 
to a change (increase) in soil moisture. The strongest dependence of the rate of soil emission on soil temperature 
among the considered plots can be traced in the plot with 50% moisture content. This fact is due to the fact that 
during the season in the given plot, the soil moisture averaged 0.31 ±0.02 m3 m-3, with an optimum moisture 
content of 0.30 m3 m-3 (30%). 

Consideration of the temperature sensitivity of soil emission (Fig. 2) during the season at all studied 
experimental sites showed some differences. As for the mean weather condition represented by 2018 and the 

Fig. 1   Average fluxes of soil emission by months in areas with 
different amounts of precipitation. 

Fig. 2  Coefficient of temperature sensitivity (Q10) of soil CO2 emission 
at the sites with the different amounts of precipitation. 
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areas with a % ratio of the amount of 
precipitation - 0, 25, 50, and 100%, 
there is similar temperature 
sensitivity, namely, when the 
temperature rises by 10 °C, the rate of 
soil emission increases on average 2 
times. Interestingly, for a plot with a 
constant moisture content of 30% 
(SWC = 0.30 m3 m-3), the temperature 
sensitivity of soil emission is 
significantly higher. In this area, with 
an increase in soil temperature by 
10 °C, the rate of soil emission will 
increase more than 4 times. This 
tendency, in our opinion, is due to the 
absence of flux limitation by moisture 
conditions in this specific area during 
the season, which confirms the 
previously established fact about the 
threshold moisture content for the 
ecosystems of the study area at 30%. 

3.2  Nitrogen response 

Analysis of the response of soil emission to various nitrogen concentrations was considered both for the 
entire growing season and in its individual intervals (Fig. 3). At the beginning of the season, immediately after 
the start of the experiment, an increase in CO2 fluxes with an increase in concentration is already noted. In this 
case, the flux was largely controlled by the change in soil moisture (r = 0.38). At this stage is demonstrated the 
so-called "priming effect" which was described in detail in the works of Kuzyakov et al. (2006). The main 
meaning, which consists in the rapid response of emission to the introduction of an agent or an external factor. 
In the middle of the season, an increase in soil emission was noted up to a nitrogen concentration of 100 kg N 
ha-1, then on the experimental plot with a maximum N concentration of 150 kg N ha-1, a decrease in the rate of 
soil emission was observed. In our opinion, this may be due to insufficient moisture during this period of the 
season (end of July) and the fact that microorganisms in conditions of a deficit of precipitation, in addition to 
reducing their vital activity, could not assimilate additional amounts of mineral nitrogen to accelerate growth 
and development. For the given time period of the season, a negative dependence of the CO2 flux on soil 
temperature (r = 0.28) was observed, due to rather high temperatures, which, together with a deficit of 
precipitation, led to some inhibition of soil emission. In terms of climatic characteristics, the end of the season 
was characterized as a dry and cold period: soil moisture did not exceed 0.31 m3 m-3, averaging 0.19 ±0.04 m3 
m-3, and the soil temperature varied from 4 to 8°C.  

Surprisingly, the highest nitrogen concentration 150 kg N ha-1 led to inhibition of soil CO2 efflux (Fig. 3) 
after the second half of the season (39th day). Here we may assume two ways of response: (1) the nitrogen just 
went down from the upper soil horizons and could not react with plant roots and microorganisms there, (2) the 
nitrogen supply was assimilated by the soil microorganisms and led to the distraction of their living processes 
and due to this was fixed the decline in the emission rates. 

As far as we started the nitrogen application from the very low concentration and up to the very high one it gave 
us a wide range of possible mechanisms of adaptation. In our experiment besides the different concentration 
treatments, we look at the different ground cover responses (Fig. 4): lichen ground cover (1), soil surface without 
lichens (2), and mineral soil (without lichens and litter layers) (3). We found that during the first 10 days the max 
response is observed for the treatment with lichen ground cover: at the sites with nitrogen concentration, 100 kg N 
ha-1 soil emission rates were higher on average by 55%. At the areas without lichen ground cover for the treatments 
with 50, 100, 150 kg N ha-1 soil emission rates were 38% higher. In the areas without lichens and litter layers, we 

Fig. 3  Changes in soil emission under the influence of different nitrogen 
concentrations in different parts of the measuring season: before the 
start of the experiment, on days 1st, 39th and 83th (end of the 
experiment) after the application of nitrogen. 
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did not identify any significant difference 
between soil emission rates for the 
different nitrogen concentration 
treatments.  

By the end of the season, the 
differences in cumulative CO2 fluxes 
between the areas with different ground 
cover and nitrogen concentration 
treatments were getting stronger. For 
the areas without lichens and litter layer 
for plots with a nitrogen concentration 
of 50, 100, and 150 kg N ha-1 – soil 
emissions were 41% higher; for the 
treatments without lichen ground cover 
- for plots with N concentration of 50 
and 150 kg N ha-1 - emission rates were 
45% higher and here we identified the 
second group compared to the average 
emission rate – min emission at plots 
with N concentration of 2 and 15 kg N 
ha-1 (35% lower than average); at the 
treatment with lichen ground cover - for 
plots with a concentration of 50, 100 
and 150 kg N ha-1 – the emission was 
58% higher. 

4.  Discussion 

To date, we have studied the effect 
of two main limiting factors for forest 
ecosystems in the boreal zone - 
moisture conditions and the amounts of 
nutrients in the soil - on the change in 
the seasonal dynamics of soil CO2 
emissions. In a comparative analysis of the two factors, it is already possible to make a number of statements 
about the nature of the mechanisms of influence and adaptation to them in the conditions of the studied 
ecosystem. 

If we consider the precipitation conditions as a natural environmental factor, then, first of all, its limiting 
effect on the CO2 flux is observed during the entire growing season. In the middle of the season, at the peak 
values of soil emission, the effect of moisture is especially traced, which is combined with the effect of an 
increase in temperature and becomes the main reason for the sometimes abrupt increase in emission. In this 
case, we can talk about a long-term and sustainable adaptation to a deficit and an excess of precipitation during 
the growing season: in both cases, inhibition of the rate of soil emission is often observed. In exceptional cases, 
at extremely low humidity, some microorganisms begin to produce large amounts of CO2 as a mechanism for 
adapting to water stress (Lee et al. 2004; Silva et al. 2019). 

In contrast to the factor of natural origin, the amount of nitrogen, as a factor of the anthropogenic origin, is 
characterized by the different effects on the flux of CO2 from the soil. The influence of the range of nitrogen 
concentrations during the summer period becomes minor since seasonal changes in climatic conditions to a 
greater extent control the amount of CO2 efflux almost throughout the season. However, at the end of the season, 
when both the amount of precipitation and temperature decline is observed, the nitrogen contribution leads to 
an increase in soil emission.   

Fig. 4. Soil CO2 emission rates for the sites with different ground 
cover: (1) with lichen ground cover, (2) without lichen, (3) without 
lichen and litter layers. 
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From the first days of the experiment, the adaptation mechanism for the treatments with the different ground 
cover is nearly similar but the range of response is different. The variation of the CO2 emission at the treatments 
with lichen ground cover observed the highest CO2 rates. However, we did not find any significant differences 
between the treatments without lichen and the treatments without litter and lichen. We assume it provides us an 
idea that any disturbances gave a huge impact on the emission rates. It was also underlined in similar studies 
too (Goetz et al. 2006; Field et al. 2012).  

The previously obtained results for this ecosystem, it has been reliably established that this moisture content 
is insufficient for the normal functioning of biological processes in the soil, while the rate of flow of soil CO2 
emission is inhibited. However, with regard to the dependence of the flux on the nitrogen concentration, the 
maximum fluxes were observed in the area with the highest concentration, and a statistically significant linear 
increase in the emission rate was noted in the series of increasing nitrogen concentration in the soil. In our 
opinion, it is during this period that the increase in soil emission is largely due to changes in the concentration 
of N in the soil, since both temperature and soil moisture decrease, and without additional impact, there would 
be a decline in fluxes characteristic of the end of the growing season (Shibistova et al. 2002; Pumpannen et al. 
2003; Tchebakova et al. 2015). 

Interestingly, when both water and nitrogen were added, an impulse response to a sharp change in 
environmental conditions can be traced, since soil emission measurements were carried out immediately after 
the introduction of an additional external factor. The fixed reaction, namely the rapid response of the rate of 
soil emission, can be explained by the fact that both experiments began during the already full launch of all 
biological systems in the considered ecosystem or community, however, after a certain time - about a month, it 
became possible to track how the adaptation to external impact. The response to the simultaneous application 
of nitrogen triggered the launch of a number of stress mechanisms for an increase in nitrogen concentration, 
which reached their peak by the middle of the season, which caused a decrease in the emission rate at a high 
concentration of N. Then, the so-called "system switch" occurred and nitrogen absorption improved with an 
increase in the amount of atmospheric precipitation. The introduction of a differentiated amount of precipitation 
made it possible not only to establish and confirm the threshold value for soil moisture but also to study the 
change in CO2 fluxes during the development of extreme drought or waterlogging of the territory. 

Conclusions 

Thus, in the course of experimental measurements, it was possible to establish the mechanisms of the 
reaction of soil emission on the introduction of water and nitrogen during the growing season. Moisture 
conditions play a decisive role in flux formation in the middle of the season, while the concentration of nitrogen 
in the soil causes a significant increase in soil emission at the end of the growing season. Water factor 
characterized by the long-term adaptation mechanisms, in the case of nitrogen, was fixed a strong impulse 
impact on emission rates. 
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1. Introduction 

 Currently, the Climate Prediction Center (CPC) issues the Global Tropics Hazards (GTH) Outlook once a 
week, forecasting rainfall, temperature, and tropical cyclone (TC) activity in the tropics for weeks 1 and 2 using 
subjective moderate and high confidence areas.  This product is being transitioned to a probabilistic forecast in 
2021, with a shift from Weeks 1 and 2 to Weeks 2 and 3, bringing the product more in line with CPC’s S2S 
initiative.  The product was originally scheduled to be transitioned in 2020, but because of the onset of the 
COVID-19 health crisis and the transition to 100% remote forecast operations, the project was delayed.  The 
new GTH Outlook is projected to become operational in time for the 2021 Atlantic hurricane season.   

In addition to shifting the forecast period, the new GTH Outlook has been redesigned with a cleaner, 
updated look (Fig. 1).  The use of a probabilistic format removes the more subjective, moderate and high-
confidence shapes and replaces them with below or above average precipitation and temperature probability 
ranges from >50% to >80% and TC probabilities ranges from >20% to >60%.   The GTH is issued on every 
Tuesday with an update on Friday for the Northern Hemisphere (NH) TC regions during peak season.  These 
updates are used to confirm agreement at Week 1 with the operational forecasts from the National Hurricane 
Center (NHC) and Joint Typhoon Warning Center (JTWC).  With the removal of Week 1 from the product, the 
Friday updates are no longer necessary and will cease.  

In order to make the new GTH, forecasters will use a combination of model guidance and tropical 
teleconnections.  The model guidance will provide a first guess for the forecast, but will be modified using other 
tools and knowledge.  The current state 
of the MJO and movement of Kelvin 
and Equatorial Rossby waves will be 
factored into the final product, as well 
as forecasts of TC activity from a hybrid 
dynamical-statistical model.  The 
outlook is not a simple regurgitation of 
model guidance, and GTH forecasts 
should outperform these tools. 

2.  Data and methods 

CPC receives data out to the 
subseasonal timescale from three 
operational centers in real-time:  
NCEP’s Climate Forecast System 
Version 2 (CFS), the European Centre 
for Medium-Range Weather Forecasts’ 
(ECMWF) Integrated Forecasting 
System, and the Environment and 
Climate Change Canada (ECCC) 
Global Ensemble Prediction System 
(GEPS).  NCEP’s Global Ensemble 

Fig. 1  Example of the new GTH format.  This is a mockup and NOT 
an official forecast. 
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Forecast System Version 12 (GEFS) 
was released in September 2020 and 
will soon be incorporated into the 
forecast suite.   

TCs are tracked using the Camargo 
and Zebiak (2002) method.  Tracks are 
filtered to remove erroneous storms 
using a false alarm climatology 
produced from the model hindcasts.  
Probabilities are created using the 
number of remaining storm points in a 
surrounding 7ox7o grid box after 
filtering.  Observations of TCs are from 
the NHC’s and JTWC’s best-track 
datasets.  Precipitation is verified using 
the CPC Morphing Technique 
(CMOPRH) dataset.  

3.  Tropical cyclones 

To support the new GTH, TC 
forecasts are made available for the 
number of storms within each basin 
(storm count) and the storm tracks 
(deterministic and probabilistic).  
Figure 2 shows the storm count skill 
scores for both the hindcast (bar graph) 
and the real-time forecasts for 2018 
(line graph).  Three different skill 
metrics are used to evaluate the models: 
the anomaly correlation, the difference 
in the correlation coefficients between 
the model and a forecast of observed 
climatology, and the mean square error 
(MSE) skill score which also compares 
against observed climatology.  
Anything above zero in the last two 
columns signifies the model forecast is 
better than a forecast of observed 
climatology.   

As expected, skill drops with 
increased lead time.  In the hindcast, 
both the CFS and ECMWF maintain 
ACs above 0.2 at Week 2 in all but the 
Atlantic (ATL); however, ECMWF is 
the only model with consistent skill at 
Weeks 2 compared to a forecast of 
observed climatology.  By Week 3, 
ECMWF only shows added skill in the 
Eastern North Pacific (ENP).  In real-
time testing, the models do show 
improvement.  For both the ATL and 

Fig. 2  Anomaly correlation values for (a) ATL, (b) ENP, (c) WNP, 
and (d) NI.  The line graphs show the 2018 real-time values while 
the bar graphs show the hindcast values.  (e) – (h) same as (a) – (d) 
but for the difference in total correlations.  (i) – (l) same as (a) – 
(d) but for the MSE skill score.   Note the ECCC scores are too 
low in (i) and (k) to appear on the line plots. 

Fig. 3 Cross-validated SEDS values from 1999-2012 for active 
basins during the month of September for CFS at (a) Week 1, (b) 
Week 2, and (c) Week 3.   (d) – (f) same as (a) – (c) but for 
ECMWF.  (g) – (i) same as (a) – (c) but for ECCC.  
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North Indian Ocean (NI) basin, CFS 
shows positive scores out to Week 4.   
ECMWF continues to outperform the 
other models with high scores in both 
Pacific basins.  Although only for a 
single year, these results are very 
encouraging.   

For storm track, the Symmetric 
Extreme Dependency Score (SEDS, 
Hogan et al. 2009) is used to measure 
skill by month.  Figure 3 shows the 
hindcast SEDS for September, the peak 
of activity for most NH basins.  During 
Week 1, CFS and ECMWF have similar 
skill and basin coverage, with ECCC 
showing much more localized skill.  At 
the Week 2 lead, skill has dropped 
considerably, but remains in certain 
regions.  The ATL basin suffers the 
biggest drop with only pockets of skill 
throughout the basin.  Although slightly 
lower and continuing to shrink in 
coverage, Week 3 scores are similar to 
Week 2.  As with the storm count 
metrics, the Pacific basins retain the 
most skill in the later leads.  In the real-
time forecasts for 2018, SEDS values 
increase with wider spatial coverage, 
but the locations of maximum skill 
within each basin remains similar 
overall (not shown).     

4.  Precipitation 

For precipitation, real-time, bias-
corrected probabilistic maps for the 
three models and a historical correlation 
weight-based consolidation (CONS) 
are provided for the GTH forecasters at 
Weeks 1-4.  These forecasts are based 
on real-time forecasts exceeding the 
upper or lower tercile, calculated from 
the model hindcasts. They allow the 
forecaster to identify regions where 
potentially impactful enhanced or 
suppressed precipitation are favored by 
the models.  Dry masking is applied 
where precipitation values are below 
5mm to allow forecasters to focus on climatologically active areas for hazards, while omitting extreme values 
that can occur over arid regions.  Other percentile thresholds such as the upper and lower decile and quintile 
where examined, but the tercile forecasts showed the highest skill as discussed below.     

Fig. 4 Reliability diagrams for precipitation probability forecasts for 
Week 2 (left) and Week 3 (right) for 2019 real-time testing.  
Lines correspond to probabilities in the lower quintile (red), 
lower tercile (orange), upper tercile (green) and upper quintile 
(blue). 
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For the CONS, the spatial correlations between model reforecasts and historically observed precipitation 
provided by CMORPH are computed.  The correlations are then applied as skill-based weights in the model 
probability average.  Therefore, it grants higher (lower) weights in models shown to historically perform well 
(poor) over various regions of the global tropics. This serves as a first-guess analysis tool for the new GTH.  In 
addition, a percentage of combined correlation analysis is regularly produced to illustrate how each model 
contributes towards the CONS blend.     

In real-time testing, reliability diagrams produced from 2019 forecasts show that models over-forecast 
probabilities of 30% or greater (Fig. 4).  They also do better at forecasting probabilities in the upper tercile (wet 
events, green) versus the lower tercile (dry events, orange).  Diagrams for Weeks 2 and 3 show similar results.  
The ECMWF has a much better reliability than either the CFS or ECCC, and the CONS is weighted as such, 
with results mirroring the ECMWF.  The upper and lower quintile are also included with the blue and red lines 
respectively, showing that the tercile is the more skillful threshold.  Brier Skill Scores (BSSs) for the upper 
tercile show that although ECMWF outperforms the other models, the CONS has the highest scores, which 
indicates the other models do add value to the forecast.  For example, at Week 2, the CONS has a BSS of 0.407 
while ECMWF has a BSS of 0.369.   

5.  Concluding remarks 

The GTH is being updated to a probabilistic format and shifting to Weeks 2 and 3.  New tools have been 
developed for both TCs and precipitation to aid in this transition.  For both events, ECMWF proves to be the 
most skillful model overall, but consolidated forecasts do gain value from the other models.  Skill scores 
increase in real-time testing which is expected with the increased ensemble sizes and temporal resolution.   The 
model guidance tools examined here provide a first-guess for forecasters, but are not the final product.  
Forecasters use their own knowledge and forecasts on subseasonal teleconnections (MJO, Kelvin waves) to 
modify the forecasts as they see fit. 
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ABSTRACT 

The 1933 Atlantic hurricane season was extremely active, with 20 named storms and 11 hurricanes 
including 6 major (Category 3+; one-minute maximum sustained winds >=96 kt) hurricanes occurring.  The 
1933 hurricane season also generated the most Accumulated Cyclone Energy (an integrated metric that accounts 
for frequency, intensity, and duration) of any Atlantic hurricane season on record.   A total of 8 hurricanes 
tracked through the Caribbean in 1933 - the most on record.  In addition, two Category 3 hurricanes made 
landfall in the United States just 23 hours apart: the Treasure Coast hurricane in southeast Florida followed by 
the Cuba-Brownsville hurricane in south Texas.   

Fig. 1 (a) August–October 1933 sea level pressure anomalies (hPa), (b) August–October 1933 zonal wind shear 
anomalies (m s-1), (c) August–October 1933 SST anomalies (°C) and (d) August–October 1933 500 hPa 
geopotential height anomalies (m).  (e-h) As in (a-d) but for August–October 2005, which has been widely  
considered to be the most active Atlantic hurricane season on record.  Anomalies in panels a–d are calculated 
relative to a 1901–1930 base period, while anomalies in panels e–h are calculated relative to a 1971–2000 
base period. 
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This manuscript examines large-scale atmospheric and oceanic conditions that likely led to such an active 
hurricane season.   Extremely weak vertical wind shear was prevalent over both the Caribbean and the tropical 
Atlantic throughout the peak months of the hurricane season, likely in part due to a weak-to-moderate La Niña 
event (Fig. 1).  These favorable dynamic conditions, combined with above-normal tropical Atlantic sea surface 
temperatures, created a very conducive environment for hurricane formation and intensification.  The Madden-
Julian oscillation was relatively active during the summer and fall of 1933, providing sub-seasonal conditions 
that were quite favorable for tropical cyclogenesis during mid-to-late August and late September to early 
October.  The current early June and August statistical models used by Colorado State University would have 
predicted a very active 1933 hurricane season.  A better understanding of these extremely active historical 
Atlantic hurricane seasons may aid in anticipation of future hyperactive seasons. 

This study will be published in the Bulletin of American Meteorological Society in 2021.  
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Despite the long-term warming signal, the prime concerns for future disruptions in the El Niño-Southern 
Oscillation (ENSO)-sensitive U.S-Affiliated Pacific Islands (USAPIs) are centered on the consequences of 
increasing frequency of El Niño and related rainfall, sea level, and cyclonic activities. As a result, the currently 
water-stressed islands and low-lying atolls in the Federated States of Micronesia (FSM) and Republic of 
Marshalls Islands (RMI) are particularly vulnerable to El Niño-related dry or drought and La Niña-related 
inundations or flooding. In both cases, the future demand oriented climate sensitive water resources sector will 
be severely affected.   

While the relationship between 
ENSO and climate variability in the 
USAPIs is conceptually clear, with El 
Niño to low (dry) and La Niña to high 
(wet) sea level (rainfall), however, 
several recent findings have shown that 
the three different types of El Niño 
events (eastern, mixed, and central) 
depict different variations of rainfall 
and sea level anomalies in the USAPI 
region. Therefore, the prime objective 
of this study is to synthesize the island-
specific physical and social impacts of 
three different types of El Niño [(e.g., 
Eastern Pacific El Niño (EPE), mixed 
El Niño (ME), and Central Pacific El 
Niño (CPE))] on the USAPIs.    

Results show that while the EPE 
and ME events are associated with dry 
conditions (lower than normal rainfall) 
for the entire USAPIs, the CPE events 
are linked to scattered wet (enhanced 
rainfall) conditions (Fig. 1 top). 
Similarly, while all the USAPIs display 
lower than normal sea level during EPE 
and ME events, some of the USAPIs 
(FSM: Pohnpei, and RMI: Majuro, 
Kwajalein) display higher than normal 
sea level during CPE events (Fig. 1 bottom). These island-specific rainfall and sea level responses to different 
El Niño events are critical for short-to-mid-term planning and management in climate-sensitive sectors in the 
USAPIs. 

Fig. 1  Monthly observed mean rainfall (top) and mean sea level (bottom) 
anomalies in the USAPIs during Central Pacific El Niño (CPE) 
(1975–2019) (X-axis: months; Y-axis: rainfall/ sea level anomaly in 
CPE events). 
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ABSTRACT 

We assess the deterministic skill in seasonal climate predictions of Sahel rainfall made with the North 
American Multi-model Ensemble (NMME). We find that skill for a regionally averaged rainfall index is 
essentially the same for forecasts for the July–September target season made as early as February/March and 
as late as June. The two dominant influences on the climate of the Sahel, the North Atlantic and the global 
tropical oceans, shape this predictability. Multi-model ensemble skill hinges on the combination of skillful 
predictions of the El Niño–Southern Oscillation made with one model (CMC2‐CanCM4) with those of North 
Atlantic sea surface temperatures made with another (NASA‐GEOSS2S).   

Fig. 1  Skill of NMME predictions of Sahel rainfall for the July–September season. Predictions are started from the 
previous January, on the right in each panel, to the June immediately preceding the July-September core of the 
monsoon season, on the left, corresponding to lead times from 6 to 1 month. Skill is measured by Spearman 
(solid line) and Pearson (dashed line) correlations with the Climate Hazards group Infrared Precipitation with 
Station data (CHIRPS) over 1982–2016. The thick, red line is for the multi-model mean, and the thinner lines of 
different colors are for single models, with the thick gray dotted line representing the 5% significance level for 
35 degrees of freedom. The three panels measure the skill of Sahel‐wide [10°-20°N, 20°W-40°E] predictions, 
specifically, the prediction of the spatially averaged anomaly on the left, the spatial average of grid point 
predictions in the middle, and the prediction of the fraction of Sahel area under positive rainfall anomaly based 
on Sahel average rainfall.  Comparison of the three panels confirms that predictability is in the large scale [left 
panel], and that it is recovered in a statistical sense [right panel] despite the addition of local noise [middle panel].  
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This study has been published in the Geophysical Research Letters in 2020.  
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1. Introduction 

 In the past two decades, the North Atlantic basin has experienced increasing tropical cyclone (TC) 
frequency.  From 2000 to 2019, 75% of the years (15 out of 20) showed above-normal TC activity.  Over the 
same period, global mean temperature has been steadily increasing.  Whether a warming climate can affect the 
frequency and intensity of TCs has received much attention in recent years (e.g., Walsh et al. 2015).   

Atlantic TCs are conventionally categorized as named storms (NS), hurricanes (H), and major hurricanes 
(MH; Table 1, left).  In such a categorization, the three groups have some members in common.  For example, 
named storms include hurricanes, and hurricanes include major hurricanes.  This may complicate the process 
in detecting the long-term changes, because TCs with different intensities may respond to climate change 
differently (e.g., Knutson et al. 2010).  In the present study, we examine the long-term changes in TCs by 
grouping them into three classes (Table 1, right), namely, tropical storms (TS, less intense than hurricanes), 
minor hurricanes (MinH, Category 1 and 2 hurricanes), and major hurricanes (MH, Category 3-5 hurricanes).  
Presented this way, no overlap exists between the three groups.  The primary foci are (a) to document the long-
term changes in TCs with different intensities, (b) to examine their relationships to the ocean and atmospheric 
environment, and (c) to assess the potential predictability of TSs, MinHs, and MHs.  
2.  Data 

The observational data used in this study are the annual number of Atlantic TCs, accumulated cyclone 
energy (ACE), monthly mean SST and zonal wind at 200 and 850 hPa from 1948 to 2019.  They are taken from 
the NOAA Hurricane Best Track Database (Landsea et al. 2004), the Extended Reconstructed Sea Surface 
Temperature version 5 (ERSSTv5; Huang et al. 2017), and the NCEP–NCAR Reanalysis (Kalnay et al. 1996).  
The analysis of SST and wind shear focuses on August–October (ASO), the peak hurricane season (e.g., Wang 
et al. 2014).  The wind shear is defined 
as the zonal wind difference between 
200 and 850 hPa, U200–U850.  An 
anomaly is the departure from a 30-year 
(1981–2010) climatology.  

3.  Results and discussion 

3.1 Relationships between ACE and 
tropical cyclones 

The ACE measures overall 
seasonal TC activity.  Its correlation 

Table 1 List of three groups of Atlantic TCs in the traditional 
categorization (left) and non-overlapping categorization (right), as 
well as the range of maximum sustained winds for each group. 
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with the TCs in each group is examined 
in Table 2.  ACE is highly correlated 
with NS (correlation: 0.69), H (0.86), 
and MH (0.86), in the traditional 
categorization.  High correlations are 
also found between the traditional 
categories themselves, ranging from 
0.57 to 0.77, consistent with the 
overlaps between the three groups.  

Using the non-overlapping 
categorizations (Table 2), ACE is 
highly correlated with MH (0.86), but 
less correlated with MinH (0.37) and TS (0.24).  There are virtually no correlations between TS, MinH, and 
MH (0.03-0.17), suggesting that the three groups are largely independent.  Their contributions to the ACE 
variance can thus be estimated by the square of their correlation coefficients with ACE.  MH, MinH, and TS 
account for 74%, 14%, and 6% of the ACE variance, respectively.  The results indicate that MH dominates the 
interannual variability of ACE.    

3.2 Long-term changes in tropical cyclones 

The long-term changes in Atlantic TCs can be seen in the 7-year running mean time series (Fig. 1).  Based 
on the variations of ACE, the 72 years are roughly divided into two high-activity eras (1948–1970 and 1995–
2019) and one low-activity era (1971–1994; Bell et al. 2020).  In the traditional categorization (Fig. 1a), MH 
displays a multidecadal variation similar to ACE.  H shows similar long-term changes, except for the 1950s and 
1960s with negative anomalies.  NS is also consistently below normal in the low-activity era and above normal 
in the recent high-activity era.  However, 
NS is below normal in the first high-
activity ear, leading to an upward trend 
over the 72-year period.  Overall, the 
long-term changes in NS, H, and MH are 
like that of ACE after 1970, but they 
behave differently in the early years 
(1948–1970).  Note that some weak and 
short-lived TCs might be missed in early 
observations (Landsea et al. 2010), which 
could affect the long-term changes.  

In the non-overlapping 
categorization (Fig. 1b), MinH is 
characterized by small negative 
anomalies in the early years (1948–1965) 
and small variations around the zero line 
afterwards, leading to a weak upward 
trend.  TS increases steadily over time 
with negative anomalies before 2000 and 
positive anomalies afterward.  The TCs 
with non-overlapping intensities 
experience different long-term changes, 
with a multidecadal variation in MH, less 
change in MinH, and an increasing trend 
in TS.  The observed increase in the TC 
activity in the recent two decades is 

Table 2  Correlations of interannual anomalies of ACE and Atlantic TCs 
between different groups over the 72 years from 1948 to 2019.  The 
correlation coefficients in bold are above the 99% significance level 
estimated by the two-tailed t test. 

Fig. 1  Time series of 7-year running mean anomalous (a) ACE, NS, 
H, MH, and (b) ACE, TS, MinH, MH from 1948 to 2019.  The two 
vertical lines separate the 72 years into two high-activity eras 
(1948–1970 and 1995–2019) and one low-activity era (1971–
1994) based on the long-term variation of ACE. 



WANG ET AL. 
 

147 

largely attributed to the increase in TS, the weak TCs.  Again, this could also be attributed to missing weak and 
short-lived TS in the pre-satellite era. 

3.3. Relationships between SST/wind 
shear and tropical cyclones 

The oceanic and atmospheric 
conditions associated with the interannual 
variability of the Atlantic TCs are 
examined in Fig. 2.  NS is positively 
correlated with SST in the North Atlantic, 
western Pacific, and Indian Ocean (Fig. 
2a).  The positive correlations between 
SST and H are relatively weak in 
comparison (Fig. 2b).  Significant 
negative correlations are also found in the 
tropical central and eastern Pacific, the 
ENSO region.  The correlations of SST 
with MH (Fig. 2c) are similar to those 
with H (Fig. 2b), except in the tropical 
western Pacific.   

The correlations of SST with TS (Fig. 
2d) are similar to Fig. 2a, suggesting that 
the maximum correlations in Fig. 2a are 
mainly associated with TS, relatively 
weak TCs.  Warming trends have been 
observed in the tropical Atlantic and 
tropical Indian Ocean-western Pacific 
(e.g., Blunden and Arndt 2020).  Both the 
warming trend of SST and the upward 
trend of TS (Fig. 1b) contribute to the 
high correlations in these regions.  Figure 
2e shows that only SSTs over small areas 
in the western tropical Pacific and 
tropical North Atlantic significantly 
correlate with MinH.  A comparison 
between Figs. 2b, 2c and 2e indicates that 
the high correlations in Fig. 2b, especially 
the negative correlations in the ENSO 
region, are associated with MH.  Given 
the strong association between ACE and 
MH, it is reasonable that their correlations 
with SST look similar (Fig. 2c, 2f).  To 
some extent, the spatial patterns in Figs. 
2c and 2f resemble the SST patterns of the 
Atlantic Multidecadal Oscillation (AMO; 
Enfield et al. 2001) in the North Atlantic, 
and ENSO and the Interdecadal Pacific 
Oscillation (IPO; Power et al. 1999) in 
the Pacific.  Both the multidecadal 
variations of MH and ACE are linked to 
these multidecadal oceanic modes (e.g., 
Kossin et al. 2010).   

Figure 3 shows the correlations 
between ASO wind shear and the time 

Fig. 2  Correlations of ASO seasonal mean SST with the interannual 
time series of (a) Atlantic NS, (b) H, (c) MH, (d) TS, (e) MinH, and 
(f) ACE over 1948–2019.  Red solid contour (0.30) and blue dash 
contour (−0.30) indicate positive and negative correlations at the 
99% significance level, respectively. Boxes in (a, c, d, e) denote the 
areas of high correlations, which are used to average SST as 
predictors. 

Fig. 3  Correlations of ASO seasonal mean vertical wind shear (U200–
U850) with the interannual time series of (a) Atlantic NS, (b) H, (c) 
MH, (d) TS, (e) MinH, and (f) ACE over 1948–2019.  Red solid 
contour (0.30) and blue dash contour (−0.30) indicate positive and 
negative correlations at the 99% significance level, respectively.  
Boxes in (a, c, d, e) denote the areas of high correlations, which are 
used to average wind shear as predictors. 
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series of the TCs and ACE.  Both NS and H are negatively correlated with the wind shear in the western tropical 
North Atlantic and eastern Pacific, and positively correlated with the wind shear in the western tropical Pacific (Fig. 
3a and 3b).  The negative correlations with MH in the tropical North Atlantic extend further eastward across the 
entire tropical Atlantic basin (Fig. 3c).  Meanwhile, positive correlations with MH in the western tropical Pacific are 
less than those with NS and H.  In general, the correlations between wind shear and NS, H, and MH have many 
similarities in the tropical Pacific and tropical North Atlantic, likely due to the overlaps in the three groups.  

Both negative and positive correlations between the wind shear and TS are also found in the tropical eastern 
Pacific and western Pacific, respectively, but there are less negative correlations in the tropical North Atlantic and 
more positive correlations in the tropical Indian Ocean and Africa (Fig. 3d).  In contrast, MinH is less correlated with 
the wind shear, with relatively weak negative (positive) correlations in the tropical eastern (western) Pacific (Fig. 
3e).  The correlations with ACE (Fig. 3f) and with MH (Fig. 3c) are similar.  As with the different relationships seen 
with SST (Fig. 2), TS, MinH, and MH also have distinctive relationships with the wind shear. 

3.4. Potential predictability 

The results presented in Figs 2 and 3 suggest that the variability of Atlantic TCs in each class are closely tied to 
the SSTs in the tropical Pacific and Atlantic, as well as the wind shear in the tropical eastern Pacific and North 
Atlantic.  Both the SST and wind shear, therefore, can be potential predictors for anticipating Atlantic TCs.  Given 
tropical SST and wind shear patterns, for example, from an operational seasonal forecast, TS, MinH, MH, and NS 
can be predicted based on their observed 
relationships with SST and wind shear 
shown in Figs. 2 and 3.  The forecast 
method is similar to those used in Wang 
et al. (2009). 

The predictability of the TCs in each 
group can be evaluated by the leave-one-
out cross-validation (Li et al. 2013) over 
1948–2019.  For example, when 
forecasting TS for a target year, three 
predictors are created for each year by 
averaging ASO SSTs in the two boxes in 
Fig. 2d, respectively, and averaging ASO 
wind shear in the box in Fig. 3d.  These 
boxes cover the areas where SST and 
wind shear are highly correlated with TS.  
Both observed SST and wind shear are 
used to construct the predictors, assuming 
that seasonal forecasts for ASO SST and 
wind shear are perfect, and therefore, 
potential predictability is assessed (Pan et 
al. 2018).  A multiple linear regression 
model is then developed based on the 
relationships between the observed TS 
and the three predictors over a 71-year 
training period, after taking out the target 
year.  The TS for the target year then can 
be predicted using the three predictors of 
the target year.  The same procedure is 
repeated for each year to obtain the 72-
year TS forecasts.  The forecast skill is 
quantified by the anomaly correlation 
(AC) between the observed and predicted 
TS over the 72 years.   

Fig. 4  Time series of observed (black) and forecasted (red) (a) TS, (b) 
MinH, (c) MH, and (d) NS anomalies from 1948 to 2019, based on 
the leave-one-out cross-validations with a multiple linear regression 
model.  The green curve in (d) is the sum of forecasted TS, MinH, 
and H (red curves in a-c) for NS.  The anomaly correlation between 
observations and forecasts is listed in each panel. 
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Figure 4 presents both observed (black) and predicted (red) TS, MinH, MH, and NS over 1948–2019 with AC 
skills of 0.57, 0.30, 0.69, and 0.70, respectively.  Among the non-overlapping categories, the highest AC (0.69) is 
for MH, which suggests that Atlantic MH has the highest predictability.  MinH has the lowest predictability with an 
AC of 0.30, likely due to its weak relationships with SST and wind shear (Figs. 2e and 3e).  Both the forecasts of TS 
and MinH exhibit an upward trend, which contributes to the AC skill.  Because NS is the sum of TS, MinH, and MH; 
therefore, the forecast of NS can also be obtained by adding the forecasts of TS, MinH, and MH together (Fig. 4d, 
green curve).  The corresponding AC skill is 0.72, comparable to the forecast skill (0.70) of NS directly from the 
multiple linear regression model.   

4.  Conclusions 

The long-term changes in Atlantic TCs over a 72-year period (1948–2019) was examined by classifying 
the TCs into TS, MinH, and MH.  In such a non-overlapping classification, TCs in one group are independent 
from those in other groups.  It was found that MH dominates the interannual variability of ACE, accounting for 
74% of the ACE variance.  MinH and TS only explain 14% and 6% of the ACE variance, respectively.  The 
Atlantic TCs with unique intensities exhibit different long-term variations.  The long-term change in TS is 
characterized by an upward trend over the 72 years, with increasing storm activity after 2000.  This suggests 
that the observed increase in Atlantic TCs in the recent two decades is largely due to the increase in weak TCs.  
MinH shows less long-term variations, with a weak upward trend.  MH displays a multi-decadal variation 
associated with AMO, also similar to the multi-decadal variation of ACE.  It should be noted that the change in 
the quality of TC data with time could affect the long-term variations of TCs (Landsea et al. 2010).   

The interannual relationships between Atlantic TCs and the ocean and atmospheric environments were also 
examined.  The TS, MinH, and MH have distinctive relationships with SST in the tropical Pacific and North 
Atlantic and wind shear over the tropical eastern Pacific and Atlantic.  Considering these relationships, the 
potential predictability of TCs was assessed by using a multiple linear regression model with SST and wind 
shear predictors, cross-validated over 1948-2019.  The results suggest high predictability for MH and low 
predictability for MinH. 
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